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Designing for Productive Failure

Manu Kapur and Katerine Bielaczyc
Learning Sciences Laboratory

National Institute of Education, Singapore

In this article, we describe the design principles undergirding productive failure (PF;
M. Kapur, 2008). We then report findings from an ongoing program of research on
PF in mathematical problem solving in 3 Singapore public schools with significantly
different mathematical ability profiles, ranging from average to lower ability. In the
1st study, 7th-grade mathematics students from intact classes experienced 1 of 2
conditions: (a) PF, in which students collaboratively solved complex problems on
average speed without any instructional support or scaffolds up until a teacher-led
consolidation; or (b) direct instruction (DI), in which the teacher provided strong
instructional support, scaffolding, and feedback. Findings suggested that although
PF students generated a diversity of linked representations and methods for solving
the complex problems, they were ultimately unsuccessful in their problem-solving
efforts. Yet despite seemingly failing in their problem-solving efforts, PF students
significantly outperformed DI students on the well-structured and complex problems
on the posttest. They also demonstrated greater representation flexibility in solving
average speed problems involving graphical representations, a representation that
was not targeted during instruction. The 2nd and 3rd studies, conducted in schools
with students of significantly lower mathematical ability, largely replicated the find-
ings of the 1st study. Findings and implications of PF for theory, design of learning,
and future research are discussed.

When and how to design structure during instructional problem-solving activities
is a fundamental theoretical and design issue in education and the learning sci-
ences (Tobias & Duffy, 2010). Instructional structure can be operationalized in a
variety of forms, such as structuring of the problem itself, scaffolding, instruc-
tional facilitation, provision of tools, content support, expert help, and so on (e.g.,
Hmelo-Silver, Duncan, & Chinn, 2007; Puntambekar & Hübscher, 2005). Thus
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46 KAPUR AND BIELACZYC

conceived, instructional structure is designed to constrain or reduce the degrees
of freedom in problem-solving activities (Wood, Bruner, & Ross, 1976), thereby
increasing the likelihood of novices achieving performance success. Indeed, a vast
body of research supports the efficacy of such an approach. This has led some
researchers to argue that instruction should be heavily guided, especially at the
start, for without it, learning may not take place (e.g., Kirschner, Sweller, & Clark,
2006). Further support for starting with greater structure during instruction with
a gradual reduction (or fading) over time as learners gain expertise comes from
several quarters (e.g., Hmelo-Silver et al., 2007; Puntambekar & Hübscher, 2005;
Wood et al., 1976).

More often than not, therefore, researchers have tended to focus on different
methods for structuring learning and problem-solving activities so as to achieve
performance success. In contrast, the role of failure in learning and problem solv-
ing, much as it is intuitively compelling, remains largely underdetermined and
underresearched by comparison (Clifford, 1984; Schmidt & Bjork, 1992). What
is perhaps more problematic is that an emphasis on achieving performance suc-
cess has led in turn to a commonly held belief that there is little efficacy in novices
solving problems without the provision of support structures initially. In contrast,
our work is grounded in the belief that engaging novices to try, and even fail, at
tasks that are beyond their skills and abilities can, under certain conditions, be
productive for developing deeper understandings.

This paper is organized into four sections. We start by reviewing the role of
failure in learning and problem solving. Drawing from this review, we articulate
the design principles for productive failure (PF) and the theoretical conjectures
they embody. We then describe the implementation of the design in Singapore
schools used to test, albeit partially, these embodied conjectures (Sandoval, 2004).
Specifically, we detail a series of classroom-based experiments comparing a PF
design with a direct instruction (DI) design in three schools with students of sig-
nificantly different mathematical ability, ranging from average to lower ability. We
conclude by discussing our findings and possible directions for future research.

THE ROLE OF FAILURE IN LEARNING AND PROBLEM SOLVING

Several scholars and research programs have spoken to the role of failure in learn-
ing and problem solving (Clifford, 1984). For example, Schmidt and Bjork (1992)
reviewed methods used in the training of motor and verbal skills. They argued that
“manipulations that maximize performance during training can be detrimental in
the long term” (p. 207), and, conversely, conditions that maximize learning in
the long term may not be the ones that maximize performance during the training
phase. They introduced the notion of “desirable difficulties” to derive implications
for learning designs. Such desirable difficulties include designing variation and/or
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PRODUCTIVE FAILURE 47

unpredictability during the training phase, interleaving as opposed to blocking
practice on a set of targeted concepts, reducing feedback for learners during the
training phase, and using tests as events that afford opportunities to learn.

There is also a growing body of supporting empirical evidence in educational
research. For example, research on impasse-driven learning (Van Lehn, Siler,
Murray, Yamauchi, & Baggett, 2003) in coached problem-solving situations pro-
vides strong evidence for the role of failure in learning. Successful learning of a
principle (e.g., a concept, a physical law) was associated with events when stu-
dents reached an impasse during problem solving. Conversely, when students did
not reach an impasse, learning was rare despite explicit tutor explanations of the
target principle. Instead of providing immediate instructional structure (e.g., in the
form of feedback, questions, or explanations) when the learner makes a demon-
strable error or is “stuck,” Van Lehn et al.’s (2003) findings suggest that it may
well be more productive to delay that structure up until the student reaches an
impasse—a form of failure—and is subsequently unable to generate an adequate
way forward.

Echoing such delaying of instructional structure, Schwartz and Bransford’s
(1998) work on preparation for future learning also demonstrated that when
undergraduate students examined similarities and differences among contrasting
cases representing a target concept, it prepared them to derive greater benefit from
a subsequent lecture or reading on that concept. Further evidence for such prepa-
ration for future learning can be found in the inventing to prepare for learning
research by Schwartz and Martin (2004). In a sequence of design experiments on
the teaching of descriptive statistics to intellectually advanced students, Schwartz
and Martin demonstrated an existence proof for the hidden efficacy of invention
activities when such activities preceded DI (e.g., lectures), despite such activi-
ties failing to produce canonical conceptions and solutions during the invention
phase.

Kapur’s (2008) work on PF adds further weight to the role of failure in learning
and problem solving. In contrast to a substantive amount of research examin-
ing students solving ill-structured problems with the provision of various support
structures and scaffolds, Kapur examined students solving complex, ill-structured
problems without the provision of any external support structures. He asked 11th-
grade student triads from seven high schools in India to solve either ill- or well-
structured physics problems in a synchronous, computer-supported collaborative
learning environment. After participating in group problem solving, all students
individually solved well-structured problems followed by ill-structured problems.
Findings revealed that ill-structured group discussions were significantly more
complex and divergent than those of their well-structured counterparts, leading
to poor group performance as evidenced by the quality of solutions produced
by the groups. However, findings also suggested a hidden efficacy in the com-
plex, divergent interactional process even though it seemingly led to failure;
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48 KAPUR AND BIELACZYC

students from groups that solved ill-structured problems outperformed their coun-
terparts in the well-structured condition in solving the subsequent well- and
ill-structured problems individually, suggesting a latent productivity in the fail-
ure. Kapur (2008) argued that delaying the structure received by students from the
ill-structured groups (who solved ill-structured problems collaboratively followed
by well-structured problems individually) helped them discern how to structure
an ill-structured problem, thereby facilitating a spontaneous transfer of problem-
solving skills. The PF effect in computer-supported collaborative learning settings
has since been replicated (Kapur & Kinzer, 2009).

These studies are just a few examples from a growing body of research
that emphasizes the need to understand conditions under which delaying struc-
ture during instruction can enhance learning (e.g., diSessa, Hammer, Sherin, &
Kolpakowski, 1991; Lesh & Doerr, 2003; Slamecka & Graf, 1978). The studies
support our argument that there is efficacy in delaying instructional structure in
order for learners to generate conceptions, representations, and understandings,
even though such understandings may not be initially correct. These studies, how-
ever, indicate more than simply a delay of instructional structure. They also under-
score the presence of desirable difficulties and productive learner activity in solv-
ing problems. It is this interest in what is present, that is, the features of productive
learner activity (even if it results in “failure”), that forms the core of our work.

Based on the literature and our own studies in PF, we have begun to develop a
design theory of what needs to be present in student problem-solving contexts in
which instructional structure is delayed. We are interested in testing our theoretical
conjectures by investigating their embodiment in the design of problem-solving
experiences that, although leading to short-term performance failure, are effica-
cious in the longer term. We describe these design principles and the theoretical
conjectures they embody next.

DESIGNING FOR PF

The literature provides insight into why providing instructional structure too
early in the problem-solving process can be problematic. First, students often
do not have the necessary prior knowledge differentiation to be able to discern
and understand the affordances of domain-specific representations and methods
given during DI (e.g., Schwartz & Martin, 2004; for a similar argument applied
to perceptual learning, see Garner, 1974; Gibson & Gibson, 1955). Second,
when concepts, representations, and methods are presented in a well-assembled,
structured manner during DI, students may not understand why those concepts,
representations, and methods are assembled in the way that they are (Anderson,
2000; Chi, Glaser, & Farr, 1988; diSessa et al., 1991; Schwartz & Bransford,
1998).
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PRODUCTIVE FAILURE 49

Given these two problems, designing for PF requires engaging students in a
learning design that embodies four core interdependent mechanisms: (a) activation
and differentiation of prior knowledge in relation to the targeted concepts, (b)
attention to critical conceptual features of the targeted concepts, (c) explanation
and elaboration of these features, and d) organization and assembly of the critical
conceptual features into the targeted concepts.

This resulted in a design comprising two phases: a generation and exploration
phase (Phase 1) followed by a consolidation phase (Phase 2). Phase 1 affords
opportunity for students to generate and explore the affordances and constraints
of multiple representations and solution methods (RSMs). Phase 2 affords oppor-
tunity for organizing and assembling the relevant student-generated RSMs into
canonical RSMs.

The designs of both phases involved decisions concerning the creation of the
activities, the participation structures, and the social surround (see Figure 1).
These decisions were guided by the following core design principles to embody
the aforementioned mechanisms:

1. Create problem-solving contexts that involve working on complex prob-
lems that challenge but do not frustrate, rely on prior mathematical
resources, and admit multiple RSMs (mechanisms a and b);

2. Provide opportunities for explanation and elaboration (mechanisms b and
c); and

3. Provide opportunities to compare and contrast the affordances and con-
straints of failed or suboptimal RSMs and the assembly of canonical RSMs
(mechanisms b–d).

The ways in which these core principles have been implemented in the designs of
the two phases are described next.

The activity
engaged in
by participants  

Participation
structures
used to
engage with
the problem  

Social
surround
used to
frame the
problem-
solving
context 

FIGURE 1 The three layers of the productive failure design.
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50 KAPUR AND BIELACZYC

Phase 1: Generation and Exploration of RSMs

The overall design goal of Phase 1 was to afford opportunities for students
to generate and explore a wide variety of RSMs for solving novel, complex
problems.

Designing the activity: “sweet-spot” calibration of complex problems.
Developing the appropriate problems for PF involves finding a sweet spot where
students are challenged yet not frustrated and remain sufficiently engaged in
problem solving. Such problem development was approached as a process of cal-
ibration, taking into account the complexity of the problems, the mathematical
resources of the students, and the affective draw of the way in which a problem is
framed.

Complexity of the problems. Well-structured problems commonly found
in textbooks typically afford normative RSMs for solving them. In such cases,
a learner either is able to solve the problem quickly or simply gives up. In con-
trast, complex problem scenarios afford multiple RSMs and often require students
to make and justify assumptions (Jonassen, 2000; Spiro, Feltovich, Jacobson, &
Coulson, 1992; Voss, 1988). Thus, not only do such problem scenarios anchor the
learning experience (Brown, Collins, & Duguid, 1989; Cognition and Technology
Group at Vanderbilt, 1997), but they also afford opportunities for students to gen-
erate a variety of RSMs for solving them (Greeno, Smith, & Moore, 1993). For
the unit on average speed, we designed two such complex problem scenarios (see
Appendix A for an example).

Prior mathematical resources of students. The complexity of a prob-
lem is not the property of the problem alone but a relation between the problem
and the problem solver (Lobato, 2003). A problem may well be a simple one
for one group of students but not for another. Even more relevant in the present
context is that the range of possible RSMs generated by students depends upon
the prior mathematical resources students can draw upon. For example, diSessa
et al. (1991) found that when sixth graders were asked to invent static representa-
tions of motion, students generated and critiqued numerous representations and,
in the process, demonstrated not only design and conceptual competence but also
meta-representational competence. This suggests that, when given an opportunity,
students do have rich constructive resources (diSessa & Sherin, 2000) to generate
a variety of RSMs for solving problems.

The Grade 7 students in our studies had not had any formal instruction on
the targeted concept of average speed. However, in primary school (Grades 1–6),
students had been taught concepts such as speed, ratio and proportions, low-
est common multiple (LCM), and highest common factor (HCF) as well as
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PRODUCTIVE FAILURE 51

problem-solving heuristics such as trial and error (also known as guess and check).
Concepts such as speed, ratio and proportion, and domain-general heuristics such
as trial and error constituted the set of prior mathematical resources and knowl-
edge necessary for students to be able to attempt complex problems on average
speed. Our pilot tests revealed that students were able to use such prior knowledge
concepts and heuristics. By taking into consideration students’ prior mathemati-
cal resources, we tweaked problem parameters such that the problem could not
be solved when students used these very resources. For example, the ratios of the
walking and biking speeds were deliberately designed to be different so that the
problem could not be solved using ratios.

Affective draw of the problem scenario. Through our pilot studies, we
found that students were more engaged and interested in the problem when it was
presented in the form of a narrative with dialogue. In other contexts, teachers have
suggested that a “comic strip” format would have more appeal (e.g., Kapur & Lee,
2009).

In sum, by taking into account the complexity of the problems, the prior math-
ematical resources of the students, and the affective draw of the way in which a
problem is framed, we used pilot tests to developmentally calibrate the complex
problems, including the time allocation for group and individual tasks.

Designing the participation structures: enabling collaboration. As much
as it is critical for students to generate a variety of RSMs for solving problems,
it is equally critical to engage in discourse about their mathematical affordances
and constraints. Because collaborative problem solving has been found to be an
enabling mechanism that allows students to share, elaborate, critique, explain, and
evaluate shared work (Chi et al., 1988; Scardamalia & Bereiter, 2003), small-
group collaboration was used as the participation structure during Phase 1. It is
important to note that research also suggests that collaborative activities may fur-
ther enrich the shared representational and solution spaces (diSessa et al., 1991;
Schwartz, 1995).

A contextual factor supporting the design component of collaboration is note-
worthy. Singapore’s mathematics curriculum emphasizes project work; students
are exposed to both short- and long-term collaborative projects in the primary
(Grades 1–6) and secondary (Grades 7–10) years. Thus, working in groups to
solve problems was an activity structure with which students in the three partic-
ipating schools were largely comfortable. In other contexts and settings, where
collaborative problem solving is an activity structure that is novel to both students
and teachers, additional structures may need to be designed to support collabora-
tion, because past research suggests that collaboration does not always materialize
by simply putting students into groups (Barron, 2003; Dillenbourg, 2002). Hence,
in our work, the grouping of students into small groups was not based simply on
randomization but on leveraging teachers’ understandings of the social dynamics
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52 KAPUR AND BIELACZYC

to maximize the likelihood that group members would work well together in their
assigned groups (E. G. Cohen, Lotan, Abram, Scarloss, & Schultz, 2002).

Designing the social surround: creating a safe space to explore. The
nature of socio-mathematical expectations and norms in the classroom influences
the extent to which students actually engage in problem solving (Cobb, 1995;
Cobb, Wood, & Yackel, 1993). In spite of strong evidence from previous work
and pilot studies that students are able to generate and explore solutions to com-
plex problems, withholding cognitive support runs counter to the normal practice
of what teachers and students are used to. At least in the local context of our
work, our experience has been that students are used to seeking assistance from
their teachers so much so that they do so even before sufficiently trying to solve
problems themselves. At the same time, teachers are just as used to providing
assistance when it is asked for so much so that often opportunities for students to
generate and explore RSMs are missed—opportunities that, as we have argued,
are critical for realizing PF.

We worked with the teachers to not provide assistance when asked for but
rather to constantly assure students that it was okay not to be able to solve the
complex problems as long as they tried various ways of solving them, especially
highlighting to them the fact that there were multiple RSMs for the problems. This
setting of expectation was important in light of the local context, wherein the usual
norm is getting to the correct answer in the most efficient manner given the curric-
ular time constraints. In other contexts and settings in which socio-mathematical
norms are more aligned toward exploration, such efforts may not be as deliberate
(e.g., Kapur, 2008).

The three layers of designing the activity, the participation structures, and the
social surround are meant to act interdependently to maximize the likelihood of
students generating and exploring the affordances and constraints of multiple
RSMs to solve complex problems. Generation enabled with collaboration facil-
itates the core mechanisms of activation and differentiation of prior knowledge,
as well as attention to and explanation and elaboration of critical conceptual fea-
tures. Designing the social surround to create appropriate expectations and norms
further facilitates the core mechanisms by creating a safe space for generation and
exploration. As described, the role of the teacher was not to provide any cognitive
or content-related support but mainly to manage the classroom and provide affec-
tive support as part of setting the appropriate expectations and norms for problem
solving.

Phase 2: Consolidation and Knowledge Assembly

The overall design goal of Phase 2 was to afford opportunities for students to com-
pare and contrast the affordances and constraints of failed or suboptimal RSMs
and the assembly of canonical RSMs.
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PRODUCTIVE FAILURE 53

Designing the activity: examining student-generated and canonical
RSMs. The central focus of designing the activity was to work with the
teacher to engender a whole-class discussion focused on understanding the affor-
dances and constraints of the various RSMs as well as to compare and contrast
student-generated RSMs with canonical ones. This activity afforded students the
opportunity to attend to and understand the critical conceptual features of the
targeted concepts as well as the assembly of these features into the canonical
RSMs.

Designing the participation structures: enhancing engagement. The
efficacy of a whole-class comparison and contrast of student-generated and canon-
ical RSMs was contingent upon how the teacher facilitated student participation
(Nathan & Kim, 2009). Groups were invited to present their work guided by the
teacher’s questions for clarification and elaboration. The teacher also paraphrased
student explanations to explicitly focus attention on the critical conceptual fea-
tures and, in the process, invite other students to participate in the discussion by
questioning, explaining, and elaborating upon one another. For teachers largely
and self-admittedly accustomed to a DI mode, these facilitation strategies are
not easily developed or adopted. Hence, a professional development program was
carried out to develop the teachers’ facilitation skills and strategies.

Designing the social surround: creating a safe space to explore. As
argued earlier, the establishment of appropriate socio-mathematical expectations
and norms in the classroom is critical to ensuring productive participation and
discussion. In a DI mode, there is a tendency for the teacher to be the authority
and correct students’ mistakes, whereas in PF, teachers set the expectations that
the discussion of student-generated RSMs was not to assess them as correct or
incorrect. Instead, the expectation set was that the process of coming up with
RSMs is an important part of mathematical practice (Thomas & Brown, 2007)
and that understanding why and under what conditions some RSMs are better
than others is important for developing mathematical understanding (diSessa &
Sherin, 2000).

EXAMINING THE PF DESIGN IN SINGAPORE SCHOOL CONTEXTS

Having articulated the theoretical conjectures embodied in the PF design, we now
describe the design implementation in a series of classroom-based experiments.
The experiments were conducted with Grade 7 students at three mainstream, co-
educational, public schools in Singapore. The medium of instruction throughout
the Singapore school system is English. Students at these schools typically come
from middle-class socioeconomic backgrounds.
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54 KAPUR AND BIELACZYC

TABLE 1
Descriptive Statistics for PSLE Performance Across Schools A, B, and C

PSLE Math Gradea PSLE Total Scoreb

School N M SD M SD

School A 75 1.39 0.52 235.3 3.25
School B 114 2.50 0.62 209.3 5.95
School C 113 3.00 0.88 203.0 5.85

Note. PSLE = Primary School Leaving Examination.
aThe lower the mean score, the better the math grade; grade A-star is equivalent to 1 point,

A to 2 points, B to 3, and so on.
bThe higher the score, the better the general ability; the PSLE is an aggregate score for all

curriculum subjects out of a maximum of 300. More information on the PSLE can be found at
www.moe.edu.sg.

The three schools, hereinafter referred to as Schools A, B, and C, were selected
based on the academic ability profile of their student intake as evidenced by
the Primary School Leaving Examination (PSLE), the sixth-grade national stan-
dardized tests used to gain entry into secondary schools (i.e., Grades 7–10) in
Singapore. Table 1 presents the descriptive statistics for the PSLE Math grade and
PSLE total score for the three schools.

With the PSLE Math grade and total score as the two dependent variables, a
multivariate analysis of variance revealed a significant multivariate effect among
the three schools, F(4, 594) = 437.82, p < .001. Students from School A, on
average, achieved the highest PSLE score, followed by those from School B and
then School C (see Table 1). This effect was statistically significant, F(2, 299) =
862.48, p < .001, partial η2 = .85. As a rule of thumb, partial η2 = .01 is consid-
ered a small, .06 a medium, and .14 a large effect size (J. Cohen, 1977). Likewise,
students from School A, on average, achieved the highest PSLE Math grade, fol-
lowed by those from School B and then School C. This effect was statistically
significant, F(2, 299) = 116.96, p < .001, partial η2 = .44.

The focus of sampling schools based on academic ability needs to be explained
further. Past research has largely focused on students with higher ability (e.g.,
Kapur, 2008; Schwartz & Bransford, 1998), wherein participants have tended to
be students who either have qualified for college or are academically advanced or
gifted. It is arguably easier to show an existence proof of PF with high-ability stu-
dents, students who are academically advanced or college bound. What is perhaps
more important for both theory and practice is to design and test the tractability
of PF with “mainstream” students, students who are not necessarily academically
advanced or college bound. By collaborating with schools with students of aver-
age (School A) and below average (Schools B and C) academic ability in math,
we hoped for a stricter test for PF.
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PRODUCTIVE FAILURE 55

Comparing PF With DI

To bring about change in classroom practice and pedagogy, especially in a system
of high-stakes testing such as Singapore, it is important to compare a new instruc-
tional design (e.g., PF) with the design most prevalent in practice (e.g., DI). We
describe these designs next and articulate our hypotheses for comparing them.

PF. In the generation and exploration phase (Phase 1), student groups (tri-
ads) were asked to solve two complex problems (see Appendix A for an example)
and given two periods for each of them. After each of the complex problems, stu-
dents solved extension problems designed as what-if scenarios corresponding to
the group complex problems. The study was carried out as part of regular curricu-
lum time. During these six periods, no extra support or scaffolds were provided
during the group or individual problem solving in accordance with the design
principles, nor was any homework assigned.

In the consolidation phase (Phase 2), the teacher asked the groups to share
their RSMs. The goal was to compare and contrast the affordances and con-
straints of the student-generated RSMs. The teacher then shared the canonical
ways (e.g., using algebra) of representing and solving the problems with the class.
While doing so, the teacher drew comparisons and contrasts between the canon-
ical and student-generated RSMs and, in the process, explicated the concept of
average speed in the context of the problems. Finally, students practiced three
well-structured problems on average speed, and the teacher discussed the solutions
to these problems.

DI. Students in the DI class were involved in teacher-led lectures guided by
the course workbook. The teacher introduced a concept (e.g., average speed) to
the class, worked through a few examples, informed them that they would be
required to attempt isomorphic problems subsequently, and encouraged students
to ask questions. Following this, students solved isomorphic problems for prac-
tice. The teacher then discussed the solutions with the class. For homework,
students were asked to continue with the workbook problems. Note that the
worked-out examples and practice problems were typically well-structured prob-
lems with fully specified parameters and canonical RSMs (see Appendix B for
examples). The well-structured problems ranged from simple to moderately diffi-
cult. This cycle of lecture, practice/homework, and feedback then repeated itself
over the course of the same number of periods as in the PF condition. Thus, the
amount of instructional time was held constant for the two conditions. Students
worked independently most of the time, although some problems were solved
collaboratively.

We hypothesized that the PF design would afford students greater opportunities
to activate and differentiate their prior knowledge; attend to, explain, and elabo-
rate upon the critical conceptual features of the concept of average speed; and
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56 KAPUR AND BIELACZYC

understand the assembly of these features into the canonical RSMs. Consequently,
PF students would be able to construct deeper conceptual understanding of the
concept of average speed compared to students in a DI design. A deeper con-
ceptual understanding should result in better performance in solving problems on
average speed on the posttest, be they standard well-structured problems often
found in textbooks or more complex problems (Kapur, 2009). In addition, we
also expected that because PF students would have generated and explored a vari-
ety of RSMs, they would also demonstrate better representational flexibility in
solving problems on average speed on the posttest (Ainsworth, Bibby, & Wood,
2002; Lesh, 1999). By representational flexibility, we refer to the extent to which
students would be able to flexibly adapt their understanding of the concepts of
average speed to solve posttest problems that involved a 2-dimensional graphical
representation that was not covered during instruction.

We now describe the three classroom-based experiments designed to test the PF
hypothesis. The three experiments focused on the differences or variation between
the PF and the DI conditions. Following that, we present a mixed-method analysis
of variance within the PF condition to better understand the PF effect.

Participants and Design

A quasi-experimental, pre/post design was used in all three schools. Table 2
presents the participants and the research design used in the three schools. Before
the unit, all students took a 30-min, 9-item pretest (α = .72) as a measure of prior
knowledge of the targeted concepts. After the unit, all students took a 35-min,
5-item posttest (α = .78).

Differences Among Schools in Research Design and Procedures

The research design and procedures for School A were exactly as described in
the previous section. For School B, the research design and procedures were the
exactly the same as in School A with the following exceptions: Pilot tests with
small groups of students prior to the actual study revealed that School B students’
frustration thresholds were lower than those in School A. Therefore, the individual
extension problems were removed from the design. The time saved was spent on
an additional consolidation lesson, given the significantly lower math ability of
School B students compared to those from School A.

The research design and procedures in School C were exactly the same as
in School B with the exception that curricular time allotted for the unit in this
school was considerably less than that in Schools A and B. This was a school-
level constraint within which we had to work. Consequently, for Phase 1, there
was only enough time for two periods of group problem solving followed by two
periods of consolidation for Phase 2. The DI condition also lasted four periods
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58 KAPUR AND BIELACZYC

in total—the time allocated for this unit in the curriculum. It is interesting that
this gave us an opportunity to test the PF hypothesis for a considerably shortened
design intervention, though, unlike in Schools A and B, we were not sure whether
our hypotheses would hold in this school.

Data Sources and Analytical Procedures

Data sources and analytical procedures were the same for all three participating
schools. Both process and outcome measures were analyzed.

Process measures for the PF condition. Each PF group was given blank
sheets of A4 paper for its group work. All group discussions were captured in
audio and transcribed by a research assistant. Process measures included the
following.

Group/individual performance. The group work artifacts were examined
to determine the number of PF groups that were able to solve to the complex
problems successfully. There was a clear bimodal distribution (i.e., groups were
either able to find a correct solution or not despite their extensive exploration of
the problem and solution spaces). Thus, if and only if a group was able to find a
correct solution (e.g., the partition distance for the complex problem scenario in
Appendix A), it was deemed successful in its problem-solving efforts. The aver-
age of the percentages of groups that solved the first problem successfully and
those that solved the second problem successfully was taken as the measure of
group performance. Note that because students in School A also solved individual
extension problems, individual performance was operationalized as the average of
the percentages of students who solved the first problem successfully and those
who solved the second problem successfully. Students in Schools B and C did not
solve extension problems.

Group RSM diversity. The group work artifacts and the discussion tran-
scripts were used to determine the maximal set of RSMs generated by the PF
groups. The set of RSMs identified in the group work artifacts was used to chunk
the group discussion into smaller episodes. For example, if the group work arti-
facts revealed that the group used ratios to solve the problem, then the relevant
episode from the discussion in which the group discussed the ratios method was
identified. Chunking of a discussion into episodes was simplified by the fact that
there were generally clear transitions in the discussions when a group moved
from one RSM (e.g., ratios, trial and error) to another (e.g., algebra). Episodes
containing additional RSMs not captured in the group work artifacts were also
identified. These included qualitative insights that were important conceptually
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PRODUCTIVE FAILURE 59

for solving the problem. In accordance with the hypothesis, the analysis was
focused squarely on RSMs, and episodes of non-task behavior and social talk
were not included in the analysis. This process was repeated for all PF groups.
Two raters independently chunked the group transcripts into episodes and coded
the episodes into RSM type. The interrater reliabilities (Krippendorff’s alphas) for
chunking of transcripts into episodes and coding of the episodes were .94 and .97,
respectively.

A total of nine different RSMs emerged from this analysis. RSM diversity was
defined as the number of different RSMs generated by a group. Thus, a group
could score 0 through 9 for RSM diversity; the higher the score, the greater the
RSM diversity. The nine RSMs were as follows:

1. Hady should walk more. All groups were able to develop the idea that
because Hady’s biking speed was greater than Jasmine’s, he should do
more of the walking. This was a qualitative concept that emerged in the
group discussions.

2. Jasmine’s walking distance must equal Hady’s biking distance and vice
versa. All groups went further to generate the insight that the partitioning
of the total distance into walking and biking components should be such
that Jasmine’s walking distance must equal Hady’s biking distance and that
Jasmine’s biking distance must equal Hady’s walking distance.

3. Diagrams. All groups were able to draw an accurate diagram to represent
the journeys of Jasmine and Hady. These diagrams contained information
about distances, speeds, and partition point. For all groups, the dia-
grams seemed to anchor their problem-solving efforts. Examples of such
diagrammatic representations can be found in Figures 2, 3, and 4.

4. LCM/HCF. Some groups used their prior knowledge of LCM and HCF to
represent and solve the problem. For example, Figure 2 shows how one
group attempted to use LCM to solve the problem. The group took the
LCM of the biking speeds to determine the shortest distance into which
the biking speeds would factor, including the time it would take to do so.
However, the group did not pursue this method any further, in part because
the LCM did not form a proper factor of the distance to be traveled (i.e.,
600 does not divide 5,000 completely). The same group then tried to find
the HCF of Jasmine’s biking speed and Hady’s walking speed. Again, as
shown in Figure 2, the strategy was to find the number of times the HCF
divided the remaining distance and then apportion the parts accordingly.
This method too did not lead to a successful solution.

5. Ratios. The use of ratios or proportions was fairly common (see Figure 4).
The idea here was simple: Divide the total distance into an appropriate
number of parts using the sum of the numerator and the denominator of the
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60 KAPUR AND BIELACZYC

Lowest Common Multiple (LCM) 
RSM

Highest Common Factor (HCF) RSM

Jasmine’s biking speed = 0.15 km/ min (150 
m/min)
Hady’s biking speed = 0.2 km/ min  (200 m/min)  

8750 m – 3750 m = 5000 m (remaining 
distance left)

2 150 200

5 75 100

5 15 20

4 3 4

3 3 1

1 1

LCM
= 2x5x5x4x3  
= 600 m 

Time required by Jasmine to bike 600 m 
= 600 m ÷ 150 m/min = 4 mins 

Distance Jasmine bikes for the first  5 minutes  
= 5 x 150 m/ min = 750m  
Distance Hady walks for the first 5 minutes = 5 x 50 m/min = 
250m

HCF of Jasmine’s and  Hady’s distances for the first  5 
minutes

10 750 250

5 75 25

5 15 5

3 1

HCF
= 10x5x5 
 = 250  
 (or 0.25 km) 

So, the total remaining distance (5 km) consists of 20 units 
of 0.25 km. Half of that distance comprises 10 units of 0.25 km. 

Since Jasmine travels 500 m more than Hady in the first part 
of the journey, she should be given
= 10 + (500 ÷ 250) = 12 units of 0.25 km,  or  (12 X 0.25) km 
= 3 km.

Time Jasmine takes to bike 3 km = 3000 ÷ 150 m/min = 
20 mins

Time Hady takes to walk 3 km = 3000 ÷ 50 m/min = 60 mins 

Difference between both of their times = 60–20 mins = 40 mins 

FIGURE 2 Examples of the LCM and HCF methods. RSM = representation and solution
method.

ratio, and then apportion the distances in inverse proportion to the speeds.
Conceptually speaking, as argued earlier, the method is a reasonable one
except that it did not work in the present case because the ratios of the
walking and riding speeds were designed to be different.

6. Trial and Error A (brute force). The use of trial and error was also fairly
common, and the few groups that managed to solve the problem success-
fully all relied on trial and error. Two versions of trial and error emerged.
The first one was what we refer to as the brute force method, shown in
Figure 3. That is, groups would make an initial guess at the partition point,
be it distance or time, typically the midpoint or the starting point, and then
increment it systematically until they converged upon a solution.

7. Trial and Error B (connected to the ratios methods). The second trial and
error method was more sophisticated because it used information from the
ratios method. Specifically, the choice of the starting guess for the parti-
tion point was informed by the partition distance derived from the ratio
method. Therefore, instead of starting from 2.5 km as the initial guess as
was the case in the brute force method, groups used the answer from the
ratio method (either 2.8 km or 3.125 km) as the initial guess for the trial and
error method. This reduced the computational and search load significantly
and was consequently a faster method than the brute force method.
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PRODUCTIVE FAILURE 61

the distance should be somewhere between 1500 m

and 1700 m…

Jas’ time =

FIGURE 3 Examples of the trial and error, single-variable, and multiple-variable algebraic
methods. RSM = representation and solution method.

8. Letter-Symbolic Algebra A (multiple variables). As shown in Figure 3,
a multiple-variable algebraic representation was one of the two types
of algebraic representations that the groups developed. However, there
were more variables than equations, which made the system of equations
unsolvable.

9. Letter-Symbolic Algebra B (single variable). A small proportion of groups
was able to derive a single-variable algebraic representation of the problem
as shown in Figure 3. However, a lack of algebraic manipulation skills
prevented them from being able to solve the equation successfully.
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62 KAPUR AND BIELACZYC

FIGURE 4 Group HD’s ratio method and Group LD’s guess and check method. HD = high
diversity; LD = low diversity; RSM = representation and solution method.

Process measures for the DI condition. Performance from the daily
homework assignment provided a proxy measure for student performance in
the DI condition. The homework comprised six to eight well-structured prob-
lems (similar to the problems in Appendix B) that the teacher scored either 1 (if
answered correctly) or 0 (if answered incorrectly). Computational or calculation
errors were not penalized given our focus on conceptual understanding. The aver-
age percentage score across the homework assignments was taken as a measure of
DI student performance.

Outcome measures for the PF and DI conditions. The 5-item posttest
comprised three well-structured problem items similar to those on the pretest, one
complex problem item, and one graphical representation item (see Appendix C for
an example of each). The interrater reliability (Krippendorff’s alpha) for scoring
the posttest was .87. The three types of items formed the three dependent variables
in a multivariate analysis of covariance (MANCOVA), with pretest score as the
covariate.

We also held debriefing sessions with the teachers after each of the two phases
of the PF design. These debriefing sessions were captured in audio and tran-
scribed. Data from these sessions are used only as corroborating evidence to
support the discussion of our findings.
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PRODUCTIVE FAILURE 63

RESULTS

Pretest

For School A, there was no significant difference between the PF and DI classes
on the pretest, F(1, 73) = 0.18, p = .675. The same was true for School B, F(2,
114) = 0.54, p = .586; and School C, F(2, 110) = 2.34, p = .101.

Process

Table 3 summarizes the findings from the process analysis. With regard to RSM
diversity, findings suggest that PF groups in all three schools were able to gen-
erate multiple RSMs for solving complex problems. An analysis of covariance
revealed a significant difference among schools on RSM diversity, F(2, 181) =
3.51, p = .032, partial η2 = .04. Levene’s test was not significant (p = .467).
Notably, this difference among schools had a small effect size, which is in and of
itself a significant finding in light of the large effect size difference in academic
ability of the students from the three schools.

With regard to group and individual performance on the complex problems,
findings suggest that in spite of generating multiple RSMs, students were ulti-
mately unable to solve the problems successfully either in groups or individually.
As can be seen from Table 3, the percentage of groups that managed to solve the

TABLE 3
Descriptive Statistics for Process Measures in the PF and Direct Instruction Conditions

PF Direct Instruction

RSM Diversity

Individual
Homework

Performancea

School No. of PF Groups
Group/Individual

Performance M SD M SD

School A 12 16%b/11.5%c 6.83 1.44 91.4% 4.5%
School B 25 7%/NA 6.11 1.36 92.6% 4.3%
School C 26 0%/NA 5.43 1.49 91.5% 5.1%

Note. PF = productive failure; RSM = representation and solution method; NA = not applicable.
aIndividual homework performance was averaged across four assignments in School A, three

in School B, and two in School C. The relatively small size of the standard deviations indicates a
generally high level of homework performance.

b16% means that on average about 2 out of the 12 groups were successful in solving the complex
problems. All successful solutions used the trial and error method.

cIndividual extension problems were given in School A only.
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64 KAPUR AND BIELACZYC

complex problems was very low in all three schools. Likewise, individual perfor-
mance on the extension problems in School A was also poor. In contrast, average
individual homework performance in the DI condition was very high in all three
schools.

These process findings double up as a manipulation check demonstrating that
students in the PF condition experienced failure at least in the conventional sense
of performance success and efficiency. In contrast, students in the DI condition,
by design, repeatedly experienced performance success in solving well-structured
problems under the teacher’s close monitoring, scaffolding, and feedback.

Posttest

Table 4 presents the descriptive statistics for the adjusted posttest scores for the PF
and DI classes for Schools A, B, and C. The interaction between prior knowledge
(covariate) and experimental condition (PF vs. DI) was not significant in School A,
F(3, 69) = 0.44, p = .725; or in School B, F(3, 108) = 1.39, p = .250; or in School
C, F(3, 107) = 0.21, p = .886. Box’s M test for homogeneity of variance was also
not significant in any of the three schools. This means that the assumptions of
parallelism of regression planes and sphericity were not violated, allowing us in

TABLE 4
Summary of Posttest Performance

Well-structured
Items (Max Score

= 19)
Complex Item

(Max Score = 7)

Representational
Flexibility (Max

Score = 3)

Variable N M SD M SD M SD

School A 75
PF 36 16.11 1.91 4.18 2.21 2.70 0.60
DI 39 14.31 2.39 2.97 2.26 2.18 0.84

School Ba 114
PF 74 15.76 2.42 3.20 2.56 2.30 0.95

PF-B 36 16.30 2.29 3.86 2.44 2.33 0.93
PF-A 38 15.30 2.45 2.58 2.65 2.26 0.98

DI 40 14.30 3.11 1.01 2.32 0.98 0.97
School Ca 113

PF 75 14.09 4.16 1.59 1.84 2.08 0.96
PF-B 37 14.50 4.25 1.90 2.16 2.26 0.95
PF-A 38 13.60 4.08 1.28 1.40 1.89 0.97

DI 38 13.30 4.08 0.68 1.18 1.49 1.00

Note. PF = productive failure; DI = direct instruction.
aTwo teachers were involved in the implementation. One taught the PF-A and DI classes; the other

taught the PF-B class.
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PRODUCTIVE FAILURE 65

TABLE 5
Summary of Multivariate and Univariate Effects of Experimental Condition (Productive

Failure vs. Direct Instruction)

Variable F p Partial η2

School A: Omnibus F(3, 70) = 8.57 <.001∗ .27
Well-structured items F(1, 72) = 13.54 <.001∗ .16
Complex item F(1, 72) = 5.48 .022∗ .07
Representational flexibility item F(1, 72) = 10.33 .002∗ .13

School B: Omnibus F(3, 109) = 7.82 <.001∗ .18
Well-structured items F(1, 111) = 7.06 .009∗ .06
Complex item F(1, 111) = 5.89 .017∗ .05
Representational flexibility item F(1, 111) = 9.43 .003∗ .08

School C: Omnibus F(3, 108) = 3.67 .014∗ .09
Well-structured items F(1, 110) < .001 .987 .00
Complex item F(1, 110) = 5.15 .025∗ .05
Representational flexibility item F(1, 110) = 5.27 .024∗ .05

∗Significant result.

turn to interpret the main effects of prior knowledge and experimental condition
in the MANCOVA (Stevens, 2002).

There was a significant multivariate effect of prior knowledge on posttest
scores in School A, F(3, 70) = 4.35, p = .007, partial η2 = .16; and also in School
C, F(3, 108) = 5.98, p = .001, partial η2 = .14. However, in School B there was
no significant multivariate effect of prior knowledge on posttest scores, F(3, 70)
= 1.54, p = .207, partial η2 = .04.

Table 5 presents the multivariate (omnibus) and univariate main effects of
experimental condition. The multivariate main effect of experimental condition
was significant in all three schools. All but one univariate main effect of experi-
mental condition was not significant: In School C, the difference between the PF
and DI classes on well-structured items did not reach significance.

Bonferroni-corrected post hoc tests were carried out to examine whether the
PF versus DI effect in Schools B and C was mainly due to one or both of the PF
classes (see Table 6). On the well-structured items, the only PF classes that signif-
icantly outperformed their respective DI classes were the PF class from School A
and the PF-B class from School B. On the complex item, all PF classes in the three
schools significantly outperformed their respective DI classes. On the graphical
representation item, all PF classes except the PF-A class in School C signifi-
cantly outperformed their respective DI classes. These results suggest that PF was
pedagogically tractable in classrooms with significantly lower math and general
academic ability. However, differences among schools are difficult to attribute to
a particular factor because of multiple confounds between school, teacher, student
ability, and intervention specifications.
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66 KAPUR AND BIELACZYC

TABLE 6
Summary of Post Hoc Effects for Schools B and C

Well-Structured
Items Complex Item

Representational
Flexibility

Variable F p F p F p

School B
DI vs. PF-B 8.87 .004∗ 21.36 .001∗ 8.54 .005∗
DI vs. PF-A ns ns 7.48 .008∗ 7.94 .006∗

School C
DI vs. PF-B ns ns 7.41 .008∗ 6.99 .010∗
DI vs. PF-A ns ns 4.01 .049∗ ns ns

Note. DI = direct instruction; PF = productive failure; ns = nonsignificant.
∗Significant result.

Thus far, our analysis has been aimed at understanding the variance between
the PF and DI conditions. This analysis also suggested a variance within the PF
condition (especially in Schools B and C), which forms the next focus of our
investigation.

VARIATION WITHIN THE PF CONDITION

The aim of unpacking variance within the PF condition is to build explanatory
support for the theoretical conjectures embodied in the PF design. The locus of
this variation could be in either phase of the design: (a) generation and explo-
ration of RSMs, or (b) consolidation and knowledge assembly, or a combination
of both. Although we believe it is critical to unpack variation across the entire
design in the long run, for the purposes of this paper and because of constraints
on what can be accomplished in a single paper, we focus on unpacking variation
in the generation and exploration phase. First we examine whether the diversity of
RSMs generated by each group relates to the subsequent posttest performance by
members of that group. Based on this relationship, we begin to unpack the actual
interactions occurring among group members in generating such RSMs.

We had hypothesized that the extent to which the PF design activates and dif-
ferentiates students’ prior knowledge (as evidenced by the generation of multiple
RSMs) will influence the extent to which they learn. Therefore, an examination
of the relationship between group RSM diversity and learning outcomes as mea-
sured on the posttest across all PF groups (63 PF groups: 12 from School A, 25
from School B, and 26 from School C) in the three schools would provide some
evidence in support of the hypothesis.

Table 3 presents the descriptive statistics for RSM diversity in the PF groups.
After we accounted for variation across schools, F(6, 354) = 3.79, p = .001,
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PRODUCTIVE FAILURE 67

partial η2 = .06; and controlled for variation in pretest, F(3, 178) = 5.83, p < .001,
partial η2 = .09; a MANCOVA1 revealed that RSM diversity had a significant
multivariate effect, F(3, 178) = 230.48, p < .001, partial η2 = .80, on the well-
structured, F(1, 180) = 222.15, p < .001, partial η2 = .55; complex, F(1, 180) =
56.80, p < .001, partial η2 = .24; and graphical representation, F(1, 180) = 6.99,
p = .009, partial η2 = .04, items on the posttest.

In fact, comparison of F values indicates that the order of effect was the greatest
for RSM diversity, followed by the pretest and then the school. More specifically,
a comparison of the effect sizes suggests that the effect of RSM diversity was
about 9 times stronger than the pretest and 13 times stronger than the school.

Contrasting-Case Analysis

The preceding analysis underscores the significant role played by RSM diver-
sity; the greater the RSM diversity, the better, on average, the performance of the
group’s members. In addition to generating multiple RSMs (mechanism a), the
PF design principles emphasize the role of a collaborative activity structure in
enabling an exploration and elaboration of these RSMs, in turn affording greater
opportunities for attending to, explaining, and elaborating upon the critical fea-
tures of the targeted concept embedded in the problem (mechanisms b and c). The
purpose of the following contrasting-case analysis is to use discussion excerpts
from two groups with contrasting levels of RSM diversity and illustrate how these
groups additionally differed in their exploration of the RSMs they generated and
how this difference in exploration potentially influenced opportunities to attend to
critical features of the problem.

Selection of contrasting-case groups. Two groups, one with high diver-
sity (hereinafter referred to as Group HD) and another with low diversity
(hereinafter referred to as Group LD) from School A that contrasted in their
RSM diversity, were selected. Group HD generated six conceptual structures (two
qualitative insights, diagrammatic representation, ratios method, guess and check
method, and algebraic method), whereas Group LD generated only three (dia-
grammatic representation, guess and check method, and LCM combined with
guess and check method). Consistent with the quantitative analysis in the pre-
ceding section, the three members of Group HD (hereinafter referred to as HD1,
HD2, and HD3) scored 22, 23, and 25, respectively, on the posttest (maximum

1Note that the MANCOVA was carried out treating each individual student as an independent
observation. Because students worked in groups, this assumption of independence is not valid, and
a MANCOVA may result in a more liberal significance level. Ideally, we would have carried out a
multilevel analysis, but the sample size was too small vis-à-vis the number of variables being analyzed.
Although this remains a limitation, it is somewhat mitigated by the large F values of the multivariate
and univariate effects (Hox, 1995).
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68 KAPUR AND BIELACZYC

score = 29), whereas the three members of Group LD (hereinafter referred to as
LD1, LD2, and LD3) scored 18, 19, and 19, respectively. Therefore, the contrast
on RSM diversity was also a contrast in posttest performance.

In the following contrasting-case analysis, we illustrate how the two groups
contrasted in terms of their efforts in exploring one of their RSMs. Our strategy is
to present the contrasting excerpts2 from the two groups followed by an analysis
of the contrast. Each excerpt is also accompanied with interpretive comments for
each utterance, the mechanisms (a, b, or c) invoked, and the collaboration moves
(e.g., proposal, question, evaluation, explanation) made.

Exploring an RSM. Exploration of an RSM requires that groups be able
to understand the affordances and constraints of the RSM. This would include
(a) deploying and working with appropriate representational forms; (b) carrying
out appropriate manipulations and computations; (c) understanding whether the
method works and, if it does not, then why it does not; and (d) working together
so that all group members can develop a shared understanding of the method. In
doing so, a good exploration would help draw attention to critical features of the
targeted concept.

The two excerpts from Groups HD and LD (see Tables 7 and 8, respectively)
contrast the nature and extent to which each group was able to explore an RSM
they generated. Group HD worked on using ratios to solve the problem, whereas
Group LD worked on trial and error, as shown in Figure 4. For the purposes of
the contrast, the difference between the RSMs is not as important as how the
two groups explored them. If anything, the trial and error method guarantees a
solution, but the problem was designed in such a way that the ratios method would
not result in a solution.

The starting point of the excerpts was determined because the two excerpts
immediately followed the groups’ attempts to understand the problem and started
by proposing a solution. The ending of the excerpt was determined as the utterance
that indicated that the group had either reached an impasse or moved on to another
method.

Comparing and contrasting the two excerpts reveals that both groups were able
to deploy appropriate representational forms and carry out the necessary compu-
tations for their respective solution method (also see Figure 4). However, the two
groups seemed to be quite different in terms of the mechanisms invoked, which
influenced their understanding of the affordances and constraints of the method

2Note that the excerpts have undergone some minimal editing for language and grammar to make
them more comprehensible. Minimal language and grammar editing was necessary to make them
readily accessible to a wide audience because students often used a local variant of English called
Singlish (short for Singapore English) in their interactions with one another.
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PRODUCTIVE FAILURE 73

(see the “Mechanism” columns in Tables 7 and 8). Because Group LD’s discussion
seemed to be focused mainly on computational features of the guess and check
method, there was little evidence that members attended to the critical features of
the targeted concept; that is, mechanism b was rarely invoked. In contrast, Group
HD’s discussion was at a more conceptual level; that is, the group worked out the
ratios of the walking and biking speeds and seemed to have realized that the ratio
method does not work when the walking and biking speed ratios are different.
That is, unless the denominators of the ratios are the same, one cannot simply
add the ratios. This non-additive property is precisely the conceptual feature that
needed to be attended to, and Group HD students seemed to have been able to
do that. This contrast between the two groups can be seen in the difference in
the number of times mechanisms b and c seemed to have been invoked in their
respective excerpts in Tables 7 and 8. Note that the guess and check method does
afford opportunities for attending to the non-additive property of ratios, but Group
LD seemed largely focused on computational as opposed to critical features.

In terms of collaboration, it once again seemed that there were differences
between the two groups (see the “Collaboration” columns in Tables 7 and 8).
In Group HD, solution proposals were met with questions, clarification and
agreement, followed by evaluation and more questions, leading to explanations
and evaluation and then more explanation until shared understanding was estab-
lished (Utterances 4–13). In other words, collaboration seemed to have facilitated
attention to and elaboration of critical features, that is, mechanisms b and c. In
contrast, the collaborative pattern in Group LD was mainly one of solution pro-
posal, followed by question, explanation and computation, with disagreements or
alternative viewpoints not being taken up substantively for discussion (Utterances
2–15). Although there was evidence of explanation and elaboration, these explana-
tions tended to describe the computational features (e.g., trying to make it 5 km)
as opposed to explaining and elaborating upon the conceptual features relating
to the average speed of Hady and Jasmine (Utterances 11–12). Consequently,
although Group LD was able to compute and work on the trial and error method
to get very close to a successful solution (see Figure 4), the excerpt reveals how
a heavy emphasis on computation could have come at the expense of conceptual
elaboration.

Summary. The preceding mixed-method analysis attempted to unpack vari-
ation in the generation and exploration phase of the PF design to explain how
differences between PF groups related to differences in posttest performance.
First, the quantitative analysis of RSM diversity in PF groups shows that the
greater the number of RSMs generated by a group, the better the posttest per-
formance of the group members (mechanism a). The fact that RSM diversity
explained the most variance underscores its explanatory importance. Second,
the qualitative contrasting-case analysis serves to illustrate how two groups that
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74 KAPUR AND BIELACZYC

differed in the number of RSMs they generated additionally seemed to differ in
their collaborative understanding of the problem and exploration of the RSMs and
how this difference in exploration potentially influenced opportunities to attend to,
explain, and elaborate upon the critical features of the concept of average speed
(mechanisms b and c). However, these findings remain tentative; analysis of all
PF groups needs to be carried out before any stronger claims can be made.

GENERAL DISCUSSION

This study was designed to explore the hidden efficacies, if any, in delaying struc-
ture in the learning and performance space of students by having them engage in
unscaffolded problem solving of complex problem scenarios prior to DI. We car-
ried out design experiments in three schools comprising students of significantly
different general and mathematical ability.

School A comprised students of average ability as evidenced by performance
on national standardized examinations, that is, the PSLE. This was the second iter-
ation of implementation of the average speed curricular unit, and the same teacher
had been involved in the project for both iterations. Consistent with findings from
the previous cohort of students taught by the same teacher as the one involved
in this study (Kapur, 2009), findings suggest that students from the PF condition
outperformed those from the DI condition on the well-structured problem items,
the complex problem item, as well as the graphical representation item on the
posttest, thereby providing support for the PF hypotheses.

School B comprised students of significantly lower general and mathematical
ability than those from School A, and this was the first implementation in which
the school had participated. Findings from School B replicated the findings from
School A on the complex and representational flexibility problem items. However,
for the well-structured items, only one of the two PF classes significantly outper-
formed the DI class. Because the descriptive trend was similar to that in School
A, that is, PF > DI, and because PF students were not given any homework
assignments or intensive practice on well-structured problems, it was encouraging
that they still managed to outperform DI students on the very kinds of well-
structured problems on which the DI students had received intensive practice and
feedback.

School C comprised students of even lower general and mathematical ability
than those from School B, and like School B, this was the first implementation
in this school. Because of curricular time constraints, School C presented us with
an additional constraint of testing the PF hypothesis within a considerably short-
ened time, as a result of which we were not sure whether we could expect our
hypotheses to hold in this school. Notwithstanding, although the descriptive trend
of PF > DI in School C was consistent with what was found in Schools A and B,
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PRODUCTIVE FAILURE 75

the difference reached significance only for the complex problem and representa-
tional flexibility items. Even so, findings were mixed in that only one of the two
PF classes seemed to have significantly outperformed the DI class.

In sum, we want to emphasize three significant findings. First, we found that
compared to DI, PF seems to engender deeper conceptual understanding with-
out compromising performance on well-structured problems. This suggests that
PF could be a pedagogically tractable design in classrooms across a spectrum of
schools with different mathematical ability levels, a finding that is consistent with
a growing body of classroom-based research programs (e.g., diSessa et al., 1991;
Lesh & Doerr, 2003; Schwartz & Martin, 2004).

Second, although we found a significant difference among schools in terms of
their students’ ability to generate RSMs for solving the novel, complex problems,
this difference among the schools had a notably smaller effect size (η2 = .04)
than preexisting differences in general ability (η2 = .85) and mathematical ability
(η2 = .44) as measured by the PSLE. In other words, differences in the ability
of students to generate RSMs to novel, complex problems are not as large as one
would expect given the differences in general and mathematical abilities.

Third, we found that RSM diversity was correlated with learning outcomes;
that is, the greater the RSM diversity, the better the learning outcomes on average.
Furthermore, the effect of RSM diversity on learning outcomes far exceeded the
effect of school or preexisting differences in prior knowledge (recall that the effect
of RSM diversity was about 9 times stronger than the effect of pretest and 13 times
stronger than that of the school).

Taken together, these findings emphasize the need to design and under-
stand conditions under which delaying structure in learning and problem-solving
activities can enhance learning (Kapur, 2008, 2009, 2010).

Explaining PF

To explain PF, we need to explain why students from the PF condition performed
better, on average, than students from the DI condition. What were the kinds of
processes that PF students were involved in that made for better learning and
performance?

The PF design embodied four interdependent core mechanisms of (a) activation
and differentiation of prior knowledge, (b) attention to critical features, (c) expla-
nation and elaboration of these features, and (d) organization and assembly into
canonical RSMs. In the PF design, the activity, the participation structures, and
the social surround were designed to facilitate these core mechanisms. Evidence
suggests that (a) PF groups were, on average, able to generate multiple RSMs for
solving the complex problems; (b) with a few exceptions, PF groups were not suc-
cessful in solving the problems; yet (c) PF students, on average, outperformed DI
students on the posttest. As hypothesized, the process of generating and exploring
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76 KAPUR AND BIELACZYC

the RSMs may have engendered sufficient knowledge differentiation and attention
to critical features that in turn prepared students to better discern and understand
those very concepts and RSMs when presented in a well-assembled form dur-
ing the consolidation phase (diSessa et al., 1991; Schwartz & Bransford, 1998;
Spiro et al., 1992). Therefore, the better performance of the PF condition provides
support for the theoretical conjectures embodied in the PF design.

Further support for the core mechanisms embodied in the PF design comes
from the analysis of variation within the PF condition. Quantitative analysis of
RSM diversity in all PF groups across the three schools showed that the greater
the number of RSMs generated, the better the learning outcome on average. This
provides support for the core mechanisms (especially mechanism a) embodied in
the PF design.

Building upon this, the qualitative contrasting-case analysis further illuminates
how two groups that differed in the number of RSMs they generated additionally
differed in their collaborative understanding of the problem and exploration of the
solutions and how this difference in exploration influenced opportunities to attend
to, explain, and elaborate upon the critical features of the problem and the con-
cept of average speed. This provides support for the core mechanisms (especially
mechanisms b and c) embodied in the PF design.

Finally, we acknowledge that space did not permit an analysis of the consolida-
tion phase, and consequently there is no evidence for core mechanism d. However,
this forms the thrust of our work as we continue further analysis to build the
explanatory base for the PF design.

Additional explanatory conjectures. Now we consider additional explana-
tory conjectures for other mechanisms that emerged from our work. We acknowl-
edge that being conjectures, they require more research to examine them further.

An affective dimension of ownership emerged, which is consistent with diSessa
et al.’s (1991) findings. From our observations in the classrooms as well as debrief-
ings with the teachers, it seemed that PF students exhibited strong ownership of
the RSMs they developed. In future studies, we hope to unpack the role of own-
ership in PF further—that is, how the extent and nature of student ownership of
ideas and methods influences the extent and nature of what students learn from PF
experiences.

In addition to this explanation, there are conceivably other possible contribut-
ing factors that will need to be studied more closely. For example, there is some
indication from the group discussions that the PF design gave students opportu-
nities to engage and develop their meta-cognitive and self-regulatory functions,
which in turn are a critical component of learning and problem-solving expertise.
In contrast, in the DI design, the well-structured problems may not have afforded
such opportunities. Examining the collaborative problem-solving processes to
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PRODUCTIVE FAILURE 77

unpack the roles of meta-cognitive and self-regulatory functions in PF is an area
that future studies and analysis would do well to examine further.

Yet another explanatory conjecture deals with the notion that perhaps PF stu-
dents had greater opportunities to engage in the practice of mathematics (Thomas
& Brown, 2007). After all, the acts of representing problems, developing domain-
general and -specific methods, flexibly adapting or inventing new RSMs when
others do not work, critiquing, elaborating, explaining to one another, and ulti-
mately not giving up signify the kinds of epistemic resources that mathematicians
commonly demonstrate and leverage in their practice (diSessa et al., 1991). This
notion also resonates well with Brown’s (2008) notion of tinkering as a mode of
knowledge production, that is, designing learning in ways that provides opportu-
nities to “play” with knowledge, generate ideas, share and critique, and ultimately
strive to understand the effectiveness of one’s ideas (Bielaczyc & Kapur, 2010).
Having opportunities to engage in processes that afford such tinkering, processes
that Scardamalia (2009) referred to as epistemic invention, may have helped stu-
dents expand their repertoire of epistemic resources situated within the context
of classroom-based problem-solving activities (Hammer, Elby, Scherr, & Redish,
2005).

To be clear: We are not arguing that some larger epistemic shift took place
within a short design intervention. What we are arguing instead is that perhaps the
PF design provided students with the opportunities to take the first steps toward
developing these context-dependent, epistemic resources for tinkering (Hammer
et al., 2005). The more such opportunities are designed for students, the better
they may develop such epistemic resources, the greater the likelihood of better
learning and performance. Once again, these remain plausible conjectures that
future studies and analysis would do well to examine further.

Limitations and Future Work

It is of course too early to attempt any generalization of the claims; the scope of
inference holds only under the conditions and settings of the respective study and
is thus circumscribed by the content domain, communication modality, age group,
sociocultural factors, and so on. Given the reality of working in real classroom
contexts that rarely allow for strict causal attribution to design elements, findings
from the experiments may only be attributed to the various instructional designs
as wholes and not to their constituent design elements. Furthermore, although
the three schools were sampled because of the significantly different general and
mathematical ability of their student intakes, differences among schools are dif-
ficult to attribute to a particular factor because of multiple confounds between
school, teacher, student ability, and intervention specifications.

In addition to evidencing the explanatory conjectures identified in the preced-
ing section, we aim to continue to further expand the explanatory basis for PF by
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78 KAPUR AND BIELACZYC

further unpacking the variation in the generation and exploration phase and the
consolidation phase. For the generation and exploration phase, we aim to examine
the nature of interactional behaviors and RSM sequences and relate them to gains
in group and individual outcomes. Methods such as lag-sequential analysis may
potentially be useful for unpacking the temporal variation in RSM sequences (e.g.,
Kapur, 2011). In addition, we want to examine the role of learners’ motivation and
frustration thresholds in learning from PF. For the consolidation phase, we aim to
carry out a mixed-method analysis of teachers’ orchestration of the consolidation
lessons vis-à-vis the design principles to see how variation in teacher-led consol-
idation relates to variation in outcomes. Further work and analyses at multiple
grain sizes with both students and teachers might speak to these concerns and add
further explanatory power to PF.

CONCLUSION

At the heart of the work reported in this paper lies the incommensurability
between learning and performance; that is, conditions that maximize performance
in the shorter term may not necessarily be the ones that maximize learning in the
longer term (Clifford, 1984; Schmidt & Bjork, 1992). Four possibilities for design
emerge. First is the possibility of designing conditions that maximize performance
in the shorter term and that also maximize learning in the longer term. Let us call
such design efforts designing for productive success. Indeed, a substantial amount
of research in the cognitive and learning sciences speaks to this, and rightly so,
because understanding conditions under which designing structure in learning and
problem-solving activities can lead to productive success is an important line of
research. However, there is also the concomitant possibility of designing con-
ditions that may well not maximize performance in the shorter term but in fact
maximize learning in the longer term. Let us call such design efforts designing for
productive failure. Consistent with past research, findings reported in this paper
suggest that there are conditions under which delaying structure in learning and
problem-solving activities may in fact lead to PF. Note that the proposition is not
that one must always design by delaying structure to understand the conditions
under which doing so may lead to PF. Instead, what is being proposed here is that
as a field we stand to gain more if we engage in research that seeks to understand
both PF as well as productive success and that a dual focus stands to advance the
field in ways that neither single focus alone can (Kapur & Rummel, 2009). As
these lines of inquiry push back against and inform each other, will we generate
not only better understandings of PF and productive success but also better under-
standings of the other two possibilities: conditions under which designs lead to
unproductive success—an illusion of performance without learning—as well as
unproductive failure.
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APPENDIX A

A Complex Problem Scenario

It was a bright, sunny morning and the day of the Singapore Idol auditions. Hady
and Jasmine were going to audition as a team. They were practicing at their friend
Ken’s house and were planning to bike to the auditions at Singapore Expo. The
auditions were supposed to start at 2 p.m. and Hady and Jasmine wanted to make
sure that they could make it in time.

Hady: Ken, how do we get to the Singapore Expo from here?
Ken: Well, follow this road (pointing to a map) until you reach the

expressway. I usually drive at a uniform speed of 90 km/h on the
expressway for about 3 minutes. After that there is a sign telling
you how to get to Singapore Expo.

Jasmine: How long does it take you to reach Singapore Expo?
Ken: It normally takes me 7 minutes to drive from my house when I am

traveling at an average speed of 75 km/h.
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After getting the directions, Hady and Jasmine left Ken’s house and biked together
at Jasmine’s average speed of 0.15 km/min. After biking for 25 minutes, Jasmine
biked over a piece of glass and her tire went flat.

Jasmine: Oops! My tire is flat! What shall we do now? Can I just ride with
you on your bike or shall we take a bus the rest of the way?

Hady: I don’t think that is a good idea. My bike is old and rusty and it
cannot hold both of us. Taking the bus is not a very good idea
either. There is no direct bus from here to Singapore Expo, so we
would have to take one bus and then transfer to another one. All
the waiting for buses would definitely make us late. Do you have
any money on you?

Jasmine: Let me check. . . . I forgot to withdraw money today. I only
have $2.

Hady: I did not bring my wallet. I only have $1 for a drink.
Jasmine: Since we do not have enough money to take a taxi, shall we just

leave our bikes here and walk?
Hady: It takes me approximately 5 minutes to walk to school, which is

about 250 meters from my home. How long does it take you to
walk to school?

Jasmine: It takes me about 13–15 minutes to walk to school, which is about
450 meters from my home.

Hady: No, no, no! Walking would take too much time. We will end up
late. Why don’t you lock up your bike and take my bike and bike
ahead. Leave my bike somewhere along the route and begin walk-
ing to the audition. I will walk from here until I get to my bike and
ride it the rest of the way since I can bike at a faster speed. My
average biking speed is 0.2 km/min.

Jasmine: That sounds like a good idea! But how far should I ride your bike
before leaving it for you and walking the rest of the way? Since
we are auditioning together as a team, we have to reach there at
the same time!?

How far should Jasmine ride Hady’s bike so they both arrive at the audition at the
same time?

APPENDIX B

Examples of Well-Structured Problems

1. The average speed of a ship for the first hour of a journey is 32 km/hr. Its
average speed for the next 2 hours is 41 km/hr. Find its average speed for
the whole journey.
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2. Jack walks at an average speed of 4 km/hr for one hour. He then cycles 6
km at 12 km/hr. Find his average speed for the whole journey.

APPENDIX C

Items on the Posttest

A well-structured item. David travels at an average speed of 4 km/hr for 1 hour.
He then cycles 6 km at an average speed of 12 km/hr. Calculate his average speed
for the entire journey.

The complex item. Hummingbirds are small birds that are known for their
ability to hover in mid-air by rapidly flapping their wings. Each year they migrate
approximately 9,000 km from Canada to Chile and then back again. The Giant
Hummingbird is the largest member of the hummingbird family, weighing 18–
20 gm. It measures 23 cm long and it flaps its wings between 70–80 times per
minute. For every 18 hours of flying it requires 6 hours of rest. The Broad Tailed
Hummingbird flaps its wings 100–125 times per minute. It is approximately 10–
11 cm long and weighs approximately 3–4 gm. For every 12 hours of flying it
requires 12 hours of rest. If both birds can travel 1 km for every 550 wing flaps
and they leave Canada at approximately the same time, which hummingbird will
get to Chile first?

The graphical representation item. Bob drove 140 miles in 2 hours and then
drove 150 miles in the next 3 hours. Study the two speed–time graphs A and B
carefully. Which graph—A, B, or both—can represent Bob’s journey?

This item was adapted from Stanford Research International’s research on
SimCalc and the Math of Change.
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