Challenge-Sensitive Action Selection: an Application to Game Balancing

Gustavo Andrade
Geber Ramalho
Hugo Santana
Universidade Federal de Pernambuco
Centro de Informatica
Caixa Postal 7851, CEP 50732-970, Recife,
Brazil

{gda,glr,hps}@cin.ufpe.br

Abstract

Dealing with users of different skills, and of variable
capacity for learning and adapting over time, is a key
issue in Human-Machine Interaction, particularly in
highly interactive applications such as computer games.
Indeed, a recognized major concern for the game
developers’ community is to provide mechanisms to
dynamically balance the difficulty level of the games in
order to keep the user interested in playing. This work
presents an innovative use of reinforcement learning
techniques to build intelligent agents that adapt their
behavior in order to provide dynamic game balancing.
The idea is to couple learning with an action selection
mechanism which depends on the evaluation of the
current user’s skills. To validate our approach, we
applied it to a real-time fighting game, obtaining good
results, as the adaptive agent is able to quickly play at the
same level as opponents with different skills.

1. Introduction

Considering the individual characteristics of users, as
well as their capacity to learn and adapt, is a key issue
when trying to provide high usability to computer systems
[12]. This is a hard problem in applications where there is
a great diversity among users in terms of skills and/or
domain knowledge. Moreover, users may improve their
performance at different rates and use different learning
strategies [12]. It is then necessary to provide user
adaptation mechanisms when building interactive
computer systems [9]. This need for user adaptation is
particularly a major concern in applications such as
computer aided instruction [3] and computer games. In
these cases, the skill or knowledge of the user must be
continuously assessed to guide the choice of the adequate

Vincent Corruble
Université Paris 6
Laboratoire d'Informatique de Paris VI
Boite 169 - 4 Place Jussieu
75252 PARIS CEDEX 05
Vincent. Corruble@lip6.fr

challenges (e.g., missions, exercises, questions, etc.) to be
proposed.

In computer games, one of the most interactive
domains nowadays, the issue of providing a good level of
challenge for the user is referred to as game balancing,
and is recognized by the game development community
as a key characteristic for a successful game [5].
Balancing a game consists in changing parameters,
scenarios and behaviors in order to avoid the extremes of
getting the player frustrated because the game is too hard
or becoming bored because the game is too easy [8]. The
idea is to keep the user interested in playing the game
from the beginning to the end. Unfortunately, fixing a few
pre-defined and static difficulty levels (e.g., beginner,
intermediate and advanced) is not sufficient. In fact, not
only should the classification of users’ skill levels be fine-
grained, but the game difficulty should also follow the
players’ personal evolutions, as they make progress via
learning, or as they regress (for instance, after a long
period without playing the game).

The current approaches to providing dynamic game
balancing are either tightly dependent on the game style,
or do not present yet adequate mechanisms to ensure a
fast and close adaptation to the diversity of users’ skill
levels, as well as their evolution.

In order to deal with the problem, we avoided the
drawbacks of attempting to learn to play at the same level
as the user. Instead, we coupled two mechanisms. First,
we build agents that are capable of learning optimal
strategies, using Reinforcement Learning (RL). These
agents are trained offline to exhibit a good initial
performance level and keep learning during the game.
Second, we provide adaptation to agents via an original
action selection mechanism dependent on the difficulty
the human player is currently facing. We validated our
approach empirically, applying it to a real-time two-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)

0-7695-2416-8/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

opponent fighting game called Knock’Em [2], whose
functionalities are similar to those of successful
commercial games, such as Capcom Street Fighter and
Midway Mortal Kombat.

In the next section we introduce the problems in
providing dynamic game balancing. Then, we shortly
present some RL concepts and discuss its application to
games. In Section 4 and 5, respectively, we introduce our
approach and show its application to a specific game.
Finally, we present some conclusions and ongoing work.

2. Dynamic game balancing approaches

Dynamic game balancing is a process which must
satisfy at least three basic requirements. First, the game
must, as quickly as possible, identify and adapt itself to
the human player’s initial level, which can vary widely
from novices to experts. Second, the game must track as
close and as fast as possible the evolutions and
regressions in the player’s performance. Third, in
adapting itself, the behavior of the game must remain
believable, since the user is not meant to perceive that the
computer is somehow facilitating things (e.g., by
decreasing the agents physical attributes or executing
clearly random and inefficient actions).

There are many different approaches to address
dynamic game balancing. In all cases, it is necessary to
measure, implicitly or explicitly, the difficulty the user is
facing at a given moment. This measure can be performed
by a heuristic function, which some authors [4] call a
“challenge function”. This function is supposed to map a
given game state into a value that specifies how easy or
difficult the game feels to the user at that specific
moment. Examples of heuristics used are: the rate of
successful shots or hits, the numbers of won and lost
pieces, life point evolution, time to complete a task, or
any metric used to calculate a game score.

Hunicke and Chapman’s approach [6] controls the
game environment settings in order to make challenges
easier or harder. For example, if the game is too hard, the
player gets more weapons, recovers life points faster or
faces fewer opponents. Although this approach may be
effective, its application is constrained to game genres
where such environment manipulations are possible.

Another approach to dynamic game balancing is to
modify the behavior of the Non-Player Characters
(NPCs), characters controlled by the computer and
usually modeled as intelligent agents. A traditional
implementation of such an agent’s intelligence is to use
behavior rules, defined during game development. A
typical rule in a fighting game would state “punch
opponent if he is reachable, chase him, otherwise”.
Extending such an approach to include opponent
modeling can be made through dynamic scripting [15],

which assigns to each rule a probability of being picked.
Rule weights are dynamically updated throughout the
game. The use of this technique to game balancing can be
made by not choosing the best rule, but the closest one to
the user level. However, as game complexity increases,
this technique results in a lot of rules, which are error-
prone and hard to build and maintain. Moreover, the
agent performance becomes limited by the best designed
rule, which can not be good enough for very skilled users.

A natural approach to address the problem is to use
machine learning [9]. Demasi and Cruz [4] built
intelligent agents employing genetic algorithm techniques
to keep alive those agents that best fit the user level.
Online coevolution [19] is used in order to speed up the
learning process. Online coevolution uses pre-defined
models (agents with good genetic features) as parents in
the genetic operations, so that the evolution is biased by
them. These models are constructed by offline training or
by hand, when the agent genetic encoding is simple
enough. This is an innovative approach, indeed.
However, it shows some limitations when considering the
requirements stated before. Using pre-defined models, the
agent’s learning becomes restricted by these models,
jeopardizing the application of the technique for very
skilled users or users with uncommon behavior. As these
users do not have a model to speed up learning, it takes a
long time until the agents reaches the user level.
Furthermore, this approach works only to increase the
agent’s performance level. If the player’s skills regress,
the agents cannot regress together. This limitation
compels the agent to always start the evolution from the
easiest level. While this can be a good strategy when the
player is a beginner, it can be bothering for skilled
players, since they will probably need to wait a lot for the
evolution of the agents.

3. Reinforcement learning in games

3.1. Background

Reinforcement Learning (RL) is often characterized as
the problem of “learning what to do (how to map
situations into actions) so as to maximize a numerical
reward signal” [16]. This framework is often defined in
terms of the Markov Decision Processes (MDP)
formalism, in which we have an agent that sequentially
makes decisions in an environment: it perceives the
current state s, from a finite set S, chooses an action a,
from a finite set 4, reaches a new state s’ and receives an
immediate reward signal 7(s,a). The information encoded
in s should satisfy the Markov Property, that is, it should
summarize all present and past sensations in such a way
that all relevant information is retained. Implicitly, the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)

0-7695-2416-8/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

reward signal r(s,a) determines the agent’s objective: it is
the feedback which guides the desired behavior.

The main goal is to maximize a long-term performance
criterion, called return, which represents the expected
value of future rewards. The agent then tries to learn an
optimal policy n* which maximizes the expected return.
A policy is a function m(s)—a that maps state perceptions
into actions. Another concept in this formalism is the
action-value function, Q"(s,a), defined as the expected
return when starting from state s, performing action a,
and then following © thereafter. If the agent can learn the
optimal action-value function Q*(s,a), an optimal policy
can be constructed greedily: for each state s, the best
action a is the one that maximizes Q*(s,a).

A traditional algorithm for solving MDPs is Q-
Learning [18]. It consists on iteratively computing the
values for the action-value function, using the following
update rule:

0(s,a) <« O(s,a)+al[r+yV(s')—QO(s,a)]

in which V(s’) = max, Q(s’,a), a is the learning rate and y
is a discount factor, which represents the relative
importance of future against immediate rewards.

There are some particular characteristics of RL which
makes it attractive to complex applications like computer
games. First, different from other kinds of machine
learning techniques, it does not require any previous
example of good behavior, being able to find optimal
strategies only through trial and error, thus reducing the
development effort necessary to build the Al of the game.
Furthermore, it can be applied offline, as a pre-processing
step during the development of the game, and then be
continuously improved online after its release [11].

RL has been successfully used in board games, like
backgammon [17], checkers [14] and Go [1]. This
technique has also been applied successfully in other
domains such as robotic soccer [13]. The work here
presented differs from these mainly in two different
aspects. First, many of these applications are turn-based
games, in which the environment does not change while
the agent is choosing its action. We deal in this work with
real-time, dynamic games, which lead in general to more
complex state representations, and the need to address
time processing issues. Second, while these works are
basically interested in making the computer beat any
opponent (possibly optimal), our goal is to have the
computer always adequately challenge his opponent,
whether or not he/she is playing optimally.

3.2. Learning to play directly at the user level
The problem of dynamically changing the game level

could be addressed with RL by carefully choosing the
reward so that the agent learns to act in the same level of

the user skill. When the game is too easy or too hard a
negative reward is given to the agent, otherwise the
feedback is a positive reward.

This approach has the clear benefit that the
mathematical model of learning actually corresponds to
the goals of the agent. However, this approach has a lot of
disadvantages, with respect to the requirements stated in
Section 2. First, using this approach, the agent will not be
able immediately to fight against expert players, since it
would need to learn before. Second, this learning
approach may lead to non-believable behaviors. For
instance, in a fight game such as Knock’em, the agent can
learn that after hitting the user hard, it must be static and
use no defense, letting the user hit him back, so as the
overall game score remain balanced.

4. Challenge-sensitive action selection

Given the difficulties in directly learning to play at the
user level, an original alternative is to face dynamic game
balancing as two separate problems: learning (building
agents that can learn optimal strategies) and adapting
(providing action selection mechanisms for providing
game balance, possibly using sub-optimal actions).

Our approach faces the first problem with
reinforcement learning. Due to the requirement of being
immediately able to play at the human player level,
including expert ones, at the beginning of the game,
offline training is needed to bootstrap the learning
process. This can be done by letting the agent play against
itself (self-learning) [7] or other pre-programmed agents
[10]. Then, online learning is used to adapt continually
this initially built-in intelligence to the specific human
opponent, in order to discover the most adapted strategy
to play against him or her.

Concerning adaptation, the idea is to find the adequate
policy for choosing actions that provide a good game
balance, i.e., actions that keep agent and human player at
approximately the same performance level. Once the
agent has learned the optimal policy, it could at times
(with a frequency depending on the challenge function,
i.e. on the difficulty the human player is facing) simply
choose randomly the action to be executed. The problem
with this approach is that it can easily violate the
believability requirement stated in Section 2. For instance,
in the Knock’em case, one of the possible actions is
“jump backwards”, which is a sensible action when being
attacked, but an extremely weird one when there is no
apparent danger. Another example is to punch even when
the adversary is very far.

In our approach, according to the difficulty the player
is facing, we propose that the agent choose actions with
high or low expected return. For a given situation, if the
game level is too hard, the agent does not choose the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)

0-7695-2416-8/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

optimal action (the one with highest action value), but
chooses progressively sub-optimal actions until its
performance is as good as the player’s. This entails
choosing the second best action, the third one, and so on,
until it reaches the player’s level. Similarly, if the game
level becomes too easy, it will choose actions whose
values are higher, possibly until it reaches the optimal
policy. Figure 1 illustrates a possible configuration for an
agent acting at its second best performance level for a
tabular representation of the learned knowledge.
However, this sub-optimal challenge-sensitive strategy
can also be applied to any other implementation of the
action-value function. It is also possible to mix the
challenge-sensitive action selection with softmax rules
[16], in which each action is associated to a probability of
being choose based on its value difference for the desired
action-value level.

]
Current
state

a, a, a; .. a

Max

Ofs, a)

Figure 1: An agent acting at the second best
performance level.

Our approach uses the order relation naturally defined
in a given state by the action-value function, which is
automatically built during the learning process. As these
values estimate the individual quality of each possible
action, it is possible to have a strong and fast control on
the agent behavior and consequently on the game level.

A possible source of instability in this action selection
mechanism is that the values of the action-value function
express the expected reward obtained by the current and
all subsequent actions, discounted by the parameter y. So,
if the agent gets delayed reward, it would need to persist
in the chosen policy in order to get the desired return. It
means that we need to define a cycle to determine when
the agent will analyze, and possibly change, its
performance level. In fact, this cycle should be the same
as the one used by the challenge function to measure the
difficulty the player is facing.

In this challenge-sensitive action selection mechanism,
the agent periodically evaluates if it is at the same level of
the player, through the challenge function, and according

to this result, maintains or changes its performance level.
The agent does not change its level until the next cycle.
This evaluation cycle is strongly tied to the particular
environment, in which the agent acts, depending, in
particular, on the delay of the rewards. If the cycle is too
short, the agent can exhibit a random behavior; if the
cycle is too long, it will not match the player evolution (or
regression) fast enough.

It is important to notice that this technique changes
only the action selection procedure, while the agent keeps
learning during the entire game. It is also worthwhile to
stress that this action selection mechanism coupled with a
successful off-line learning phase (during the bootstrap
phase), can allow the agent to be fast enough to play at
the user level at the beginning of the game, no matter how
experienced he or she is.

5. Case study

5.1. Game description

As a case study, the approach was applied to
Knock’Em [2], a real-time fighting game where two
players face each other inside a bullring. The main
objective of the game is to beat the opponent. A fight
ends when the life points of one player (initially, 100
points) reach zero, or after Imin30secs of fighting,
whatever comes first. The winner is the fighter which has
the highest remaining life at the end. The environment is
a bidimensional arena in which horizontal moves are free
and vertical moves are possible through jumps. The
possible attack actions are to punch (strong or fast), to
kick (strong or fast), and to launch fireballs. Punches and
kicks can also be performed in the air, during a jump. The
defensive actions are blocking or crouching. While
crouching, it is also possible for a fighter to punch and
kick the opponent. If the fighter has enough spiritual
energy (called mana), fireballs can be launched. Mana is
reduced after a fireball launch and continuously refilled
during time at a fixed rate.

5.2. Learning to fight

The fighters’ artificial intelligence is implemented as a
reinforcement learning task. As such, it is necessary to
code the agents’ perceptions, possible actions and reward
signal. We used a straightforward tabular implementation
of Q-learning, since, as we will show, although simple,
this approach provided very good results. The state
representation (agent perceptions) is represented by the
following tuple:

S= (Sagent) Soppunentr D’ Magentr Mopponent’ F)
Sagente Stands for the agent state (stopped, jumping, or
crouching). Sepponent Stands for opponent state (stopped,

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)

0-7695-2416-8/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

jumping, crouching, attacking, jump attacking, crouch
attacking, and blocking). D represents opponent distance
(near, medium distance and far away). M stands for agent
or opponent mana (sufficient or insufficient to launch one
fireball). Finally, F stands for enemies’ fireballs
configuration (near, medium distance, far away, and no
existence).

The agent’s actions are the ones possible to all
fighters: punching and kicking (strong or fast), coming
close, running away, jumping, jumping to approximate,
jumping to escape, launching fireball, blocking,
crouching and standing still.

The reinforcement signal is based on the difference of
life caused by the action (life taken out from opponent
minus life lost by the agent). As a result, the agent reward
is always in the range [-100, 100]. Negative rewards
mean bad performance, because the agent lost more life
than was taken from the opponent, while positive rewards
are the desired agent’s learning objective.

The RL agent’s initial intelligence is built through
offline learning against other agents. We used state-
machine, random and another RL agent (self-learning) as
trainers. The 3 agents trained with different opponents
fought then against each other in a series of 30 fights. The
resulting mean of life differences after each fight showed
that the agents trained against the random and the
learning agents obtained the best performances. Since the
difference between these two latter agents is not
significant, in the next section experiments, the agent that
learned against a random agent is considered as the
starting point for the online RL agent.

In all RL agents, the learning rate was fixed at 0.50
and the reward discount rate at 0.90, both for offline and
online learning. This high learning rate is used because,
as the opponent can be a human player with dynamic
behavior, the agent needs to quickly improve its policy
against him or her.

5.3. Fighting at the user’s level

The action selection mechanism proposed was
implemented and evaluated in Knock’em. The challenge
function used is based on the life difference during the
fights. In order to stimulate the player, the function is
designed so that the agent tries to play better than him or
her. Therefore, we empirically stated the following
heuristic challenge function: when the agent’s life is
smaller than the player’s life, the game level is easy;
when their life difference is smaller than 10% of the total
life (100), the game level is medium; otherwise, it is
difficult.

The evaluation cycle used is 100 game cycles (or game
loops). This value was empirically set to be long enough
so that the agent can get sufficient data about the

opponent before evaluating him or her, and short enough
so that the agent quickly adapt to the player’s behavior.

easy, if L(agent) < L(player)
f =<medium, if L(agent)— L(player) <10
difficult, otherwise

The implementation of the proposed action selection
mechanism is summarized as follows. The agent starts the
game acting at its medium performance level. As in
Knock’em there are thirteen possible actions and so
thirteen possible levels in our adaptive agent, it starts at
the sixth level. During the game, the agent chooses the
action which is the 6™ highest value at the action-value
function. After the evaluation cycle (100 game cycles), it
evaluates the player through the previous challenge
function. If the level is easy, the agent regresses to the 7™
level; if it is difficult, it progresses to the 5" level;
otherwise, it remains on the 6" level. As there are
approximately 10 evaluations through a single fight, the
agent can advance to the best performance level or
regress to the worst one in just the first fight.

5.4. Experimental results

Since it is too expensive and complex to run
experiments with human players, we decided to initially
validate our adaptation approach comparing the
performance of three distinct agents: a traditional state-
machine (script-based agent), a traditional reinforcement
learning (playing as well as possible), and the adaptive
agent (implementing the proposed approach). Both
reinforcement learning based agents (the traditional and
the adaptive) were previously trained against a random
agent. The evaluation scenario consists of a series of
fights against different opponents, simulating the
diversity of human players strategies: a state-machine
(SM, static behavior), a random (RD, unforeseeable
behavior) and a trained traditional RL agent (TRL,
intelligent and with learning skills).

Each agent being evaluated plays 30 fights against
each opponent. The performance measure is based on the
final life difference in each fight. Positive values
represent victories of the evaluated agent, whereas
negative ones represent defeats. Figure 2 shows the state-
machine (SM) agent performance against each of the
other 3 agents. The positive values of the white line show
that the agent can beat a random opponent, but the
negative points show that sometimes the former loses
against the latter. The black line shows that two state-
machine fighters have a similar performance while
fighting against each other. The negative gray points
show that the traditional RL agent always beats the state-
machine.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)

0-7695-2416-8/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

State-Machine against other agents

100

80 o 'y

60

.
40

20 —

.
2073;? 3 4 5678 9; A12]‘3*4151617%1920¥2223@2526§7i2930

-40

=3

604 N Py
. o * * ®

-80

-100 -

Figure 2: State-machine agent performance (SM =
State Machine, RD = Random, TRL = traditional no
adapting RL).

In each evaluation, testing hypotheses (p-value
significance tests) are provided to check whether the
mean of the differences of life in each set is different of
zero, at a significance level of 5%. If the mean is
significantly different from zero, then one of the agents is
better than the other; otherwise, the agents must be
playing at the same level. Table 1 summarizes these data
and shows that the SM agent plays at the same level of
other SM and a RD agent, but is significantly worse than
a TRL agent.

Table 1: State-machine performance analysis

Mean Std. deviation p-value l:iiglei;iecnacnet?
SM 1,20 18,32 0,72 No
RD 9,23 37,13 0,18 No
TRL | -52,73 10,92 0,00 Yes

Table 2: Traditional RL performance analysis

Mean Std. deviation p-value Is)ii;ﬁ:cnacrft'i’s
SM 52,47 11,54 0,00 Yes
RD 55,47 23,35 0,00 Yes
TRL -2,17 27,12 0,66 No

Figure 4 illustrates the adaptive RL agent performance.
Although this agent has the same capabilities as
traditional RL, because their learning algorithms and their
initial knowledge are the same, the adaptive mechanism
forces the agent to act at the same level as the opponent.
The average performance shows that most of the fights
end with a small difference of life, meaning that both
fighters had similar performance. Table 3 confirms these
results showing that the adaptive agent is equal to the
three agents.

Adaptive RL against other agents

100
80
60
40

0 4/\! W
I QJQJ_LM'B e zsi{z'ize

20 1d e 3
-40 1»
-60
-80
-100

o

——SM e RD —e—TRL

Figure 4: Adaptive RL agent performance (SM =
State Machine, RD = Random, TRL = traditional no
adapting RL).

Table 3: Adaptive RL performance analysis

Figure 3 and Table 2 show that the traditional RL . Difference is
agent beats quite easily the state-machine and the random Mean | Std. deviation | p-value | G igeant?
players. As in the previous case (state-machine agent SM 0,37 20,67 0,92 No
analysis) the performance is equivalent when two RD 4,47 23,47 0,30 No
identical agents are fighting. TRL -7,33 21,98 0,07 No

Traditional RL against other agents

100
80 4

o /\ 3/ M

20

ol_*
20{128 6567829 1‘011 12131415161791920112223;4252627232930
-40 U

60
-80
-100

Figure 3: Traditional RL agent performance (SM =
State Machine, RD = Random, TRL = traditional no
adapting RL).

The adaptive RL agent (ARL) obtains similar
performance against different opponents because it can
interleave easy and hard actions, balancing the game
level. Figure 5 shows a histogram with the agent actions
frequency. The thirteen x-values correspond to all actions
the agent can perform. The leftmost action is to the one
with the highest value at the action-value function, while
the rightmost is the one with lowest value. This way, the
leftmost is the action which the agent believes to be the
strongest one in each state and the rightmost is the action
it believes to be the lighter one. The high frequency of
powerful actions against the TRL agent shows that the
ARL agent needed to play at an advanced performance
level. The frequency of actions against the SM and RD

II'FI'

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)
0-7695-2416-8/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

agents shows that the ARL played in an easier level,
around the 9™ and 11™ one.

Actions Frequency Histogram

i

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

‘IARLXSM BARL x RDDARLXTRL‘

Figure 5: Histogram for the adaptive agent

6. Conclusions

The RL community has studied in detail the
exploration versus exploitation dilemma [7]. An agent
using a model-free algorithm like Q-Learning on a
dynamic environment, should be constantly deciding
whether to exploit the already learned knowledge, by
choosing the actions with the highest estimates of
expected return, or to explore new actions (possibly
randomly chosen), to update these estimates (to learn
more).

In this work, we introduce another dimension
(challenge-sensitive) in RL action selection for scenarios
involving a human user and an agent (or possibly various
agents). According to this dimension, instead of choosing
the best action (exploitation) or choosing a random action
(exploration), which might not be believable, the agent
analyses its own learned knowledge in order to choose
actions which are just good enough to be challenging for
the human opponent, whatever his or her level. This work
presents thus an original approach to construct agents that
dynamically adapt their behavior while learning in order
to keep the game level adapted to the current user skills, a
key problem in computer games and other applications
requiring adaptive human-computer interactions, such as
computer aided instruction applications.

The results obtained in a real-time fighting game
indicate the effectiveness of our approach. In fact,
although the adaptive agent could easily beat their
opponents, the performance level is adapted so it plays
close to the level of its opponent, interleaving wins and
defeats. These results show that this innovative use of RL
can provide a strong and fast control on the agent
behavior and consequently on the game level.

We are now running systematic experiments with
around 100 human players, who are playing against
different types of agents, including our adaptive one, to

check which one is really entertaining. The first results
are encouraging, but the study is ongoing.

7. References

[1] Abramson, M., and Wechsler, H., “Competitive
Reinforcement Learning for Combinatorial Problems”, In
Proceedings of the International Joint Conference on Neural
Networks, Washington, DC, 2001, pp. 2333-2338.

[2] Andrade, G., Santana, H., Furtado, A., Leitdo, A., and
Ramalho, G., “Online Adaptation of Computer Games Agents:
A Reinforcement Learning Approach”. In Proceedings of the
3rd Brazilian Workshop on Computer Games and Digital
Entertainment, Curitiba, 2004.

[3] Beck, J., Stern M., and Woolf B., “Using the Student
Model to Control Problem Difficulty”, In Proceedings of Sixth
International Conference on User Modeling, Vienna, 1997, pp.
277-288.

[4] Demasi, P., and Cruz, A., “Online Coevolution for Action
Games”. In Proceedings of The 3rd International Conference on
Intelligent Games And Simulation, London, 2002, pp. 113-120.
[5] Falstein, N., “The Flow Channel”. Game Developer
Magazine, May Issue, 2004.

[6] Hunicke, R., and Chapman, V., “Al for Dynamic Difficulty
Adjustment in Games”. Challenges in Game Artificial
Intelligence AAAI Workshop, San Jose 2004 .91-96.

[7] Kaelbling, L., Littman, M., Moore, A,
“Reinforcement Learning: A Survey Journal of
Artificial Intelligence Research, AAAI Press, 1996, pp.
4:237-285.

[8] Koster, R., Theory of Fun for Game Design, Paraglyph
Press, Phoenix, 2004

[9] Langley, “Machine Learning for Adaptive User
Interfaces”, Kunstiche Intellugenz, 1997, pp. 53-62

[10] Madelra C., Corruble, V., Ramalho, G., and Ratitch, B.,
“Bootstrapping the Learning Process for the Semi-automated
Design of a Challenging Game AI”. Challenges in Game
Artificial Intelligence AAAI Workshop, San Jose, 2004, pp. 72-
76.

[11] Manslow, J., “Using Reinforcement Learning to Solve Al
Control Problems”, In Steve Rabin, editor, Al Game
Programming Wisdom 2, Charles River Media, Hingham, MA,
2003.

[12] Nielsen, J., Usability Engineerin, Morgan Kaufmann, San
Francisco, 1993.

[13] Merke A., and Riedmiller, M. “Karlsruhe Brainstormers - A
Reinforcement Learning Approach to Robotic Soccer”.
RoboCup 2001. RoboCup-2000.: Robot Soccer World Cup 1V,
London, 2001, pp. 435-440.

[14] Samuel, A., “Some studies in machine learning using the
game of checkers II-Recent progress”, IBM Journal on
Research and Development, 1967, 11:601-617.

[15] Spronck, P., Sprinkhuizen-Kuyper, 1., and Postma, E.,
“Drff}eulty Scalmg of Game AI”. In Proceedmgs of the
5th International Conference on Intelligent Games and
Simulation, Belgium, 2004, pp. 33-37.

[16] Sutton, R., and Barto, A., Reinforcement Learning: An
lntroduction, The MIT Press, Massachusetts, 1998.

[17] Tesauro,. G., “TD-Gammon, a self-teaching backgammon
program, achieves master-level play”, Neural Computation, The
MIT Press, Massachusetts, 1994, 6(2): 215-219.

[18] Watkins, C., and Dayan, P., “Q-learning”, Machine
Learning, 1992, 8(3):279-292.

[19] Wiegand, R., Liles, W., and Jong, G., “Analyzing
Cooperative Coevolution with Evolutionary Game Theory”, In
Proceedings of the 2002 Congress on Evolutionary
Computation, IEEE Press, Honolulu, 2002, pp. 1600-1605.

TEEE .2

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)

0-7695-2416-8/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

