
Challenge-Sensitive Action Selection: an Application to Game Balancing

Gustavo Andrade

Geber Ramalho

Hugo Santana

Universidade Federal de Pernambuco

Centro de Informática

Caixa Postal 7851, CEP 50732-970, Recife,

Brazil

{gda,glr,hps}@cin.ufpe.br

Vincent Corruble

Université Paris 6

Laboratoire d'Informatique de Paris VI

Bôite 169 - 4 Place Jussieu

75252 PARIS CEDEX 05

Vincent.Corruble@lip6.fr

Abstract

Dealing with users of different skills, and of variable

capacity for learning and adapting over time, is a key

issue in Human-Machine Interaction, particularly in

highly interactive applications such as computer games.

Indeed, a recognized major concern for the game

developers’ community is to provide mechanisms to

dynamically balance the difficulty level of the games in

order to keep the user interested in playing. This work

presents an innovative use of reinforcement learning

techniques to build intelligent agents that adapt their

behavior in order to provide dynamic game balancing.

The idea is to couple learning with an action selection

mechanism which depends on the evaluation of the

current user’s skills. To validate our approach, we

applied it to a real-time fighting game, obtaining good

results, as the adaptive agent is able to quickly play at the

same level as opponents with different skills.

1. Introduction

Considering the individual characteristics of users, as
well as their capacity to learn and adapt, is a key issue
when trying to provide high usability to computer systems
[12]. This is a hard problem in applications where there is
a great diversity among users in terms of skills and/or
domain knowledge. Moreover, users may improve their
performance at different rates and use different learning
strategies [12]. It is then necessary to provide user
adaptation mechanisms when building interactive
computer systems [9]. This need for user adaptation is
particularly a major concern in applications such as
computer aided instruction [3] and computer games. In
these cases, the skill or knowledge of the user must be
continuously assessed to guide the choice of the adequate

challenges (e.g., missions, exercises, questions, etc.) to be
proposed.

In computer games, one of the most interactive

domains nowadays, the issue of providing a good level of

challenge for the user is referred to as game balancing,

and is recognized by the game development community

as a key characteristic for a successful game [5].

Balancing a game consists in changing parameters,

scenarios and behaviors in order to avoid the extremes of

getting the player frustrated because the game is too hard

or becoming bored because the game is too easy [8]. The

idea is to keep the user interested in playing the game

from the beginning to the end. Unfortunately, fixing a few

pre-defined and static difficulty levels (e.g., beginner,

intermediate and advanced) is not sufficient. In fact, not

only should the classification of users’ skill levels be fine-

grained, but the game difficulty should also follow the

players’ personal evolutions, as they make progress via

learning, or as they regress (for instance, after a long

period without playing the game).

The current approaches to providing dynamic game

balancing are either tightly dependent on the game style,

or do not present yet adequate mechanisms to ensure a

fast and close adaptation to the diversity of users’ skill

levels, as well as their evolution.

In order to deal with the problem, we avoided the

drawbacks of attempting to learn to play at the same level

as the user. Instead, we coupled two mechanisms. First,

we build agents that are capable of learning optimal

strategies, using Reinforcement Learning (RL). These

agents are trained offline to exhibit a good initial

performance level and keep learning during the game.

Second, we provide adaptation to agents via an original

action selection mechanism dependent on the difficulty

the human player is currently facing. We validated our

approach empirically, applying it to a real-time two-

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)
0-7695-2416-8/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

opponent fighting game called Knock’Em [2], whose

functionalities are similar to those of successful

commercial games, such as Capcom Street Fighter and

Midway Mortal Kombat.

In the next section we introduce the problems in

providing dynamic game balancing. Then, we shortly

present some RL concepts and discuss its application to

games. In Section 4 and 5, respectively, we introduce our

approach and show its application to a specific game.

Finally, we present some conclusions and ongoing work.

2. Dynamic game balancing approaches

Dynamic game balancing is a process which must

satisfy at least three basic requirements. First, the game

must, as quickly as possible, identify and adapt itself to

the human player’s initial level, which can vary widely

from novices to experts. Second, the game must track as

close and as fast as possible the evolutions and

regressions in the player’s performance. Third, in

adapting itself, the behavior of the game must remain

believable, since the user is not meant to perceive that the

computer is somehow facilitating things (e.g., by

decreasing the agents physical attributes or executing

clearly random and inefficient actions).

There are many different approaches to address

dynamic game balancing. In all cases, it is necessary to

measure, implicitly or explicitly, the difficulty the user is

facing at a given moment. This measure can be performed

by a heuristic function, which some authors [4] call a

“challenge function”. This function is supposed to map a

given game state into a value that specifies how easy or

difficult the game feels to the user at that specific

moment. Examples of heuristics used are: the rate of

successful shots or hits, the numbers of won and lost

pieces, life point evolution, time to complete a task, or

any metric used to calculate a game score.

Hunicke and Chapman’s approach [6] controls the

game environment settings in order to make challenges

easier or harder. For example, if the game is too hard, the

player gets more weapons, recovers life points faster or

faces fewer opponents. Although this approach may be

effective, its application is constrained to game genres

where such environment manipulations are possible.

Another approach to dynamic game balancing is to

modify the behavior of the Non-Player Characters

(NPCs), characters controlled by the computer and

usually modeled as intelligent agents. A traditional

implementation of such an agent’s intelligence is to use

behavior rules, defined during game development. A

typical rule in a fighting game would state “punch

opponent if he is reachable, chase him, otherwise”.

Extending such an approach to include opponent

modeling can be made through dynamic scripting [15],

which assigns to each rule a probability of being picked.

Rule weights are dynamically updated throughout the

game. The use of this technique to game balancing can be

made by not choosing the best rule, but the closest one to

the user level. However, as game complexity increases,

this technique results in a lot of rules, which are error-

prone and hard to build and maintain. Moreover, the

agent performance becomes limited by the best designed

rule, which can not be good enough for very skilled users.

A natural approach to address the problem is to use

machine learning [9]. Demasi and Cruz [4] built

intelligent agents employing genetic algorithm techniques

to keep alive those agents that best fit the user level.

Online coevolution [19] is used in order to speed up the

learning process. Online coevolution uses pre-defined

models (agents with good genetic features) as parents in

the genetic operations, so that the evolution is biased by

them. These models are constructed by offline training or

by hand, when the agent genetic encoding is simple

enough. This is an innovative approach, indeed.

However, it shows some limitations when considering the

requirements stated before. Using pre-defined models, the

agent’s learning becomes restricted by these models,

jeopardizing the application of the technique for very

skilled users or users with uncommon behavior. As these

users do not have a model to speed up learning, it takes a

long time until the agents reaches the user level.

Furthermore, this approach works only to increase the

agent’s performance level. If the player’s skills regress,

the agents cannot regress together. This limitation

compels the agent to always start the evolution from the

easiest level. While this can be a good strategy when the

player is a beginner, it can be bothering for skilled

players, since they will probably need to wait a lot for the

evolution of the agents.

3. Reinforcement learning in games

3.1. Background

Reinforcement Learning (RL) is often characterized as

the problem of “learning what to do (how to map

situations into actions) so as to maximize a numerical

reward signal” [16]. This framework is often defined in

terms of the Markov Decision Processes (MDP)

formalism, in which we have an agent that sequentially

makes decisions in an environment: it perceives the

current state s, from a finite set S, chooses an action a,

from a finite set A, reaches a new state s’ and receives an

immediate reward signal r(s,a). The information encoded

in s should satisfy the Markov Property, that is, it should

summarize all present and past sensations in such a way

that all relevant information is retained. Implicitly, the

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)
0-7695-2416-8/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

reward signal r(s,a) determines the agent’s objective: it is

the feedback which guides the desired behavior.

The main goal is to maximize a long-term performance

criterion, called return, which represents the expected

value of future rewards. The agent then tries to learn an

optimal policy * which maximizes the expected return.

A policy is a function (s) a that maps state perceptions

into actions. Another concept in this formalism is the

action-value function, Q (s,a), defined as the expected

return when starting from state s, performing action a,

and then following thereafter. If the agent can learn the

optimal action-value function Q*(s,a), an optimal policy

can be constructed greedily: for each state s, the best

action a is the one that maximizes Q*(s,a).

A traditional algorithm for solving MDPs is Q-

Learning [18]. It consists on iteratively computing the

values for the action-value function, using the following

update rule:

)],()'(.[),(),(asQsVrasQasQ

in which V(s’) = maxa Q(s’,a), is the learning rate and

is a discount factor, which represents the relative

importance of future against immediate rewards.

There are some particular characteristics of RL which

makes it attractive to complex applications like computer

games. First, different from other kinds of machine

learning techniques, it does not require any previous

example of good behavior, being able to find optimal

strategies only through trial and error, thus reducing the

development effort necessary to build the AI of the game.

Furthermore, it can be applied offline, as a pre-processing

step during the development of the game, and then be

continuously improved online after its release [11].

RL has been successfully used in board games, like

backgammon [17], checkers [14] and Go [1]. This

technique has also been applied successfully in other

domains such as robotic soccer [13]. The work here

presented differs from these mainly in two different

aspects. First, many of these applications are turn-based

games, in which the environment does not change while

the agent is choosing its action. We deal in this work with

real-time, dynamic games, which lead in general to more

complex state representations, and the need to address

time processing issues. Second, while these works are

basically interested in making the computer beat any

opponent (possibly optimal), our goal is to have the

computer always adequately challenge his opponent,

whether or not he/she is playing optimally.

3.2. Learning to play directly at the user level

The problem of dynamically changing the game level

could be addressed with RL by carefully choosing the

reward so that the agent learns to act in the same level of

the user skill. When the game is too easy or too hard a

negative reward is given to the agent, otherwise the

feedback is a positive reward.

This approach has the clear benefit that the

mathematical model of learning actually corresponds to

the goals of the agent. However, this approach has a lot of

disadvantages, with respect to the requirements stated in

Section 2. First, using this approach, the agent will not be

able immediately to fight against expert players, since it

would need to learn before. Second, this learning

approach may lead to non-believable behaviors. For

instance, in a fight game such as Knock’em, the agent can

learn that after hitting the user hard, it must be static and

use no defense, letting the user hit him back, so as the

overall game score remain balanced.

4. Challenge-sensitive action selection

Given the difficulties in directly learning to play at the

user level, an original alternative is to face dynamic game

balancing as two separate problems: learning (building

agents that can learn optimal strategies) and adapting

(providing action selection mechanisms for providing

game balance, possibly using sub-optimal actions).

Our approach faces the first problem with

reinforcement learning. Due to the requirement of being

immediately able to play at the human player level,

including expert ones, at the beginning of the game,

offline training is needed to bootstrap the learning

process. This can be done by letting the agent play against

itself (self-learning) [7] or other pre-programmed agents

[10]. Then, online learning is used to adapt continually

this initially built-in intelligence to the specific human

opponent, in order to discover the most adapted strategy

to play against him or her.

Concerning adaptation, the idea is to find the adequate

policy for choosing actions that provide a good game

balance, i.e., actions that keep agent and human player at

approximately the same performance level. Once the

agent has learned the optimal policy, it could at times

(with a frequency depending on the challenge function,

i.e. on the difficulty the human player is facing) simply

choose randomly the action to be executed. The problem

with this approach is that it can easily violate the

believability requirement stated in Section 2. For instance,

in the Knock’em case, one of the possible actions is

“jump backwards”, which is a sensible action when being

attacked, but an extremely weird one when there is no

apparent danger. Another example is to punch even when

the adversary is very far.

In our approach, according to the difficulty the player

is facing, we propose that the agent choose actions with

high or low expected return. For a given situation, if the

game level is too hard, the agent does not choose the

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)
0-7695-2416-8/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

optimal action (the one with highest action value), but

chooses progressively sub-optimal actions until its

performance is as good as the player’s. This entails

choosing the second best action, the third one, and so on,

until it reaches the player’s level. Similarly, if the game

level becomes too easy, it will choose actions whose

values are higher, possibly until it reaches the optimal

policy. Figure 1 illustrates a possible configuration for an

agent acting at its second best performance level for a

tabular representation of the learned knowledge.

However, this sub-optimal challenge-sensitive strategy

can also be applied to any other implementation of the

action-value function. It is also possible to mix the

challenge-sensitive action selection with softmax rules

[16], in which each action is associated to a probability of

being choose based on its value difference for the desired

action-value level.

Figure 1: An agent acting at the second best
performance level.

Our approach uses the order relation naturally defined

in a given state by the action-value function, which is

automatically built during the learning process. As these

values estimate the individual quality of each possible

action, it is possible to have a strong and fast control on

the agent behavior and consequently on the game level.

A possible source of instability in this action selection

mechanism is that the values of the action-value function

express the expected reward obtained by the current and

all subsequent actions, discounted by the parameter . So,

if the agent gets delayed reward, it would need to persist

in the chosen policy in order to get the desired return. It

means that we need to define a cycle to determine when

the agent will analyze, and possibly change, its

performance level. In fact, this cycle should be the same

as the one used by the challenge function to measure the

difficulty the player is facing.

In this challenge-sensitive action selection mechanism,

the agent periodically evaluates if it is at the same level of

the player, through the challenge function, and according

to this result, maintains or changes its performance level.

The agent does not change its level until the next cycle.

This evaluation cycle is strongly tied to the particular

environment, in which the agent acts, depending, in

particular, on the delay of the rewards. If the cycle is too

short, the agent can exhibit a random behavior; if the

cycle is too long, it will not match the player evolution (or

regression) fast enough.

It is important to notice that this technique changes

only the action selection procedure, while the agent keeps

learning during the entire game. It is also worthwhile to

stress that this action selection mechanism coupled with a

successful off-line learning phase (during the bootstrap

phase), can allow the agent to be fast enough to play at

the user level at the beginning of the game, no matter how

experienced he or she is.

5. Case study

5.1. Game description

As a case study, the approach was applied to

Knock’Em [2], a real-time fighting game where two

players face each other inside a bullring. The main

objective of the game is to beat the opponent. A fight

ends when the life points of one player (initially, 100

points) reach zero, or after 1min30secs of fighting,

whatever comes first. The winner is the fighter which has

the highest remaining life at the end. The environment is

a bidimensional arena in which horizontal moves are free

and vertical moves are possible through jumps. The

possible attack actions are to punch (strong or fast), to

kick (strong or fast), and to launch fireballs. Punches and

kicks can also be performed in the air, during a jump. The

defensive actions are blocking or crouching. While

crouching, it is also possible for a fighter to punch and

kick the opponent. If the fighter has enough spiritual

energy (called mana), fireballs can be launched. Mana is

reduced after a fireball launch and continuously refilled

during time at a fixed rate.

5.2. Learning to fight

The fighters’ artificial intelligence is implemented as a

reinforcement learning task. As such, it is necessary to

code the agents’ perceptions, possible actions and reward

signal. We used a straightforward tabular implementation

of Q-learning, since, as we will show, although simple,

this approach provided very good results. The state

representation (agent perceptions) is represented by the

following tuple:

S = (Sagent, Sopponent, D, Magent, Mopponent, F)

Sagent stands for the agent state (stopped, jumping, or

crouching). Sopponent stands for opponent state (stopped,

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)
0-7695-2416-8/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

jumping, crouching, attacking, jump attacking, crouch

attacking, and blocking). D represents opponent distance

(near, medium distance and far away). M stands for agent

or opponent mana (sufficient or insufficient to launch one

fireball). Finally, F stands for enemies’ fireballs

configuration (near, medium distance, far away, and no

existence).

The agent’s actions are the ones possible to all

fighters: punching and kicking (strong or fast), coming

close, running away, jumping, jumping to approximate,

jumping to escape, launching fireball, blocking,

crouching and standing still.

The reinforcement signal is based on the difference of

life caused by the action (life taken out from opponent

minus life lost by the agent). As a result, the agent reward

is always in the range [-100, 100]. Negative rewards

mean bad performance, because the agent lost more life

than was taken from the opponent, while positive rewards

are the desired agent’s learning objective.

The RL agent’s initial intelligence is built through

offline learning against other agents. We used state-

machine, random and another RL agent (self-learning) as

trainers. The 3 agents trained with different opponents

fought then against each other in a series of 30 fights. The

resulting mean of life differences after each fight showed

that the agents trained against the random and the

learning agents obtained the best performances. Since the

difference between these two latter agents is not

significant, in the next section experiments, the agent that

learned against a random agent is considered as the

starting point for the online RL agent.

In all RL agents, the learning rate was fixed at 0.50

and the reward discount rate at 0.90, both for offline and

online learning. This high learning rate is used because,

as the opponent can be a human player with dynamic

behavior, the agent needs to quickly improve its policy

against him or her.

5.3. Fighting at the user’s level

The action selection mechanism proposed was

implemented and evaluated in Knock’em. The challenge

function used is based on the life difference during the

fights. In order to stimulate the player, the function is

designed so that the agent tries to play better than him or

her. Therefore, we empirically stated the following

heuristic challenge function: when the agent’s life is

smaller than the player’s life, the game level is easy;

when their life difference is smaller than 10% of the total

life (100), the game level is medium; otherwise, it is

difficult.

The evaluation cycle used is 100 game cycles (or game

loops). This value was empirically set to be long enough

so that the agent can get sufficient data about the

opponent before evaluating him or her, and short enough

so that the agent quickly adapt to the player’s behavior.

otherwisedifficult

playerLagentLifmedium

playerLagentLifeasy

f

,

10)()(,

)()(,

The implementation of the proposed action selection

mechanism is summarized as follows. The agent starts the

game acting at its medium performance level. As in

Knock’em there are thirteen possible actions and so

thirteen possible levels in our adaptive agent, it starts at

the sixth level. During the game, the agent chooses the

action which is the 6th highest value at the action-value

function. After the evaluation cycle (100 game cycles), it

evaluates the player through the previous challenge

function. If the level is easy, the agent regresses to the 7th

level; if it is difficult, it progresses to the 5th level;

otherwise, it remains on the 6th level. As there are

approximately 10 evaluations through a single fight, the

agent can advance to the best performance level or

regress to the worst one in just the first fight.

5.4. Experimental results

Since it is too expensive and complex to run

experiments with human players, we decided to initially

validate our adaptation approach comparing the

performance of three distinct agents: a traditional state-

machine (script-based agent), a traditional reinforcement

learning (playing as well as possible), and the adaptive

agent (implementing the proposed approach). Both

reinforcement learning based agents (the traditional and

the adaptive) were previously trained against a random

agent. The evaluation scenario consists of a series of

fights against different opponents, simulating the

diversity of human players strategies: a state-machine

(SM, static behavior), a random (RD, unforeseeable

behavior) and a trained traditional RL agent (TRL,

intelligent and with learning skills).

Each agent being evaluated plays 30 fights against

each opponent. The performance measure is based on the

final life difference in each fight. Positive values

represent victories of the evaluated agent, whereas

negative ones represent defeats. Figure 2 shows the state-

machine (SM) agent performance against each of the

other 3 agents. The positive values of the white line show

that the agent can beat a random opponent, but the

negative points show that sometimes the former loses

against the latter. The black line shows that two state-

machine fighters have a similar performance while

fighting against each other. The negative gray points

show that the traditional RL agent always beats the state-

machine.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)
0-7695-2416-8/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

State-Machine against other agents

-100

-80

-60

-40

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SM RD TRL

Figure 2: State-machine agent performance (SM =
State Machine, RD = Random, TRL = traditional no

adapting RL).
In each evaluation, testing hypotheses (p-value

significance tests) are provided to check whether the

mean of the differences of life in each set is different of

zero, at a significance level of 5%. If the mean is

significantly different from zero, then one of the agents is

better than the other; otherwise, the agents must be

playing at the same level. Table 1 summarizes these data

and shows that the SM agent plays at the same level of

other SM and a RD agent, but is significantly worse than

a TRL agent.

Table 1: State-machine performance analysis

Mean Std. deviation p-value
Difference is

significant?

SM 1,20 18,32 0,72 No

RD 9,23 37,13 0,18 No

TRL -52,73 10,92 0,00 Yes

Figure 3 and Table 2 show that the traditional RL

agent beats quite easily the state-machine and the random

players. As in the previous case (state-machine agent

analysis) the performance is equivalent when two

identical agents are fighting.

Traditional RL against other agents

-100

-80

-60

-40

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SM RD TRL

Figure 3: Traditional RL agent performance (SM =
State Machine, RD = Random, TRL = traditional no

adapting RL).

Table 2: Traditional RL performance analysis

Mean Std. deviation p-value
Difference is

significant?

SM 52,47 11,54 0,00 Yes

RD 55,47 23,35 0,00 Yes

TRL -2,17 27,12 0,66 No

Figure 4 illustrates the adaptive RL agent performance.

Although this agent has the same capabilities as

traditional RL, because their learning algorithms and their

initial knowledge are the same, the adaptive mechanism

forces the agent to act at the same level as the opponent.

The average performance shows that most of the fights

end with a small difference of life, meaning that both

fighters had similar performance. Table 3 confirms these

results showing that the adaptive agent is equal to the

three agents.

Adaptive RL against other agents

-100

-80

-60

-40

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SM RD TRL

Figure 4: Adaptive RL agent performance (SM =
State Machine, RD = Random, TRL = traditional no

adapting RL).

Table 3: Adaptive RL performance analysis

Mean Std. deviation p-value
Difference is

significant?

SM 0,37 20,67 0,92 No

RD 4,47 23,47 0,30 No

TRL -7,33 21,98 0,07 No

The adaptive RL agent (ARL) obtains similar

performance against different opponents because it can

interleave easy and hard actions, balancing the game

level. Figure 5 shows a histogram with the agent actions

frequency. The thirteen x-values correspond to all actions

the agent can perform. The leftmost action is to the one

with the highest value at the action-value function, while

the rightmost is the one with lowest value. This way, the

leftmost is the action which the agent believes to be the

strongest one in each state and the rightmost is the action

it believes to be the lighter one. The high frequency of

powerful actions against the TRL agent shows that the

ARL agent needed to play at an advanced performance

level. The frequency of actions against the SM and RD

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)
0-7695-2416-8/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

agents shows that the ARL played in an easier level,

around the 9th and 11th one.

Actions Frequency Histogram

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

ARL x SM ARL x RD ARL x TRL

Figure 5: Histogram for the adaptive agent

6. Conclusions

The RL community has studied in detail the

exploration versus exploitation dilemma [7]. An agent

using a model-free algorithm like Q-Learning on a

dynamic environment, should be constantly deciding

whether to exploit the already learned knowledge, by

choosing the actions with the highest estimates of

expected return, or to explore new actions (possibly

randomly chosen), to update these estimates (to learn

more).

In this work, we introduce another dimension

(challenge-sensitive) in RL action selection for scenarios

involving a human user and an agent (or possibly various

agents). According to this dimension, instead of choosing

the best action (exploitation) or choosing a random action

(exploration), which might not be believable, the agent

analyses its own learned knowledge in order to choose

actions which are just good enough to be challenging for

the human opponent, whatever his or her level. This work

presents thus an original approach to construct agents that

dynamically adapt their behavior while learning in order

to keep the game level adapted to the current user skills, a

key problem in computer games and other applications

requiring adaptive human-computer interactions, such as

computer aided instruction applications.

The results obtained in a real-time fighting game

indicate the effectiveness of our approach. In fact,

although the adaptive agent could easily beat their

opponents, the performance level is adapted so it plays

close to the level of its opponent, interleaving wins and

defeats. These results show that this innovative use of RL

can provide a strong and fast control on the agent

behavior and consequently on the game level.

We are now running systematic experiments with

around 100 human players, who are playing against

different types of agents, including our adaptive one, to

check which one is really entertaining. The first results

are encouraging, but the study is ongoing.

7. References

[1] Abramson, M., and Wechsler, H., “Competitive
Reinforcement Learning for Combinatorial Problems”, In
Proceedings of the International Joint Conference on Neural
Networks, Washington, DC, 2001, pp. 2333-2338.
[2] Andrade, G., Santana, H., Furtado, A., Leitão, A., and
Ramalho, G., “Online Adaptation of Computer Games Agents:
A Reinforcement Learning Approach”. In Proceedings of the
3rd Brazilian Workshop on Computer Games and Digital
Entertainment, Curitiba, 2004.
[3] Beck, J., Stern M., and Woolf B., “Using the Student
Model to Control Problem Difficulty”, In Proceedings of Sixth
International Conference on User Modeling, Vienna, 1997, pp.
277-288.
[4] Demasi, P., and Cruz, A., “Online Coevolution for Action
Games”. In Proceedings of The 3rd International Conference on
Intelligent Games And Simulation, London, 2002, pp. 113-120.
[5] Falstein, N., “The Flow Channel”. Game Developer
Magazine, May Issue, 2004.
[6] Hunicke, R., and Chapman, V., “AI for Dynamic Difficulty
Adjustment in Games”. Challenges in Game Artificial
Intelligence AAAI Workshop, San Jose, 2004, pp .91-96.
[7] Kaelbling, L., Littman, M., and Moore, A.,
“Reinforcement Learning: A Survey”, Journal of
Artificial Intelligence Research, AAAI Press, 1996, pp.
4:237-285.
[8] Koster, R., Theory of Fun for Game Design, Paraglyph
Press, Phoenix, 2004.
[9] Langley, P., “Machine Learning for Adaptive User
Interfaces”, Kunstiche Intellugenz, 1997, pp. 53-62
[10] Madeira, C., Corruble, V., Ramalho, G., and Ratitch, B.,
“Bootstrapping the Learning Process for the Semi-automated
Design of a Challenging Game AI”. Challenges in Game
Artificial Intelligence AAAI Workshop, San Jose, 2004, pp. 72-
76.
[11] Manslow, J., “Using Reinforcement Learning to Solve AI
Control Problems”, In Steve Rabin, editor, AI Game
Programming Wisdom 2, Charles River Media, Hingham, MA,
2003.
[12] Nielsen, J., Usability Engineerin, Morgan Kaufmann, San
Francisco, 1993.
[13] Merke A., and Riedmiller, M. “Karlsruhe Brainstormers - A
Reinforcement Learning Approach to Robotic Soccer”.
RoboCup 2001. RoboCup-2000: Robot Soccer World Cup IV,
London, 2001, pp. 435-440.
[14] Samuel, A., “Some studies in machine learning using the
game of checkers II-Recent progress”, IBM Journal on
Research and Development, 1967, 11:601-617.
[15] Spronck, P., Sprinkhuizen-Kuyper, I., and Postma, E.,
“Difficulty Scaling of Game AI”. In Proceedings of the
5th International Conference on Intelligent Games and
Simulation, Belgium, 2004, pp. 33-37.
[16] Sutton, R., and Barto, A., Reinforcement Learning: An
Introduction, The MIT Press, Massachusetts, 1998.
[17] Tesauro,. G., “TD-Gammon, a self-teaching backgammon
program, achieves master-level play”, Neural Computation, The
MIT Press, Massachusetts, 1994, 6(2): 215-219.
[18] Watkins, C., and Dayan, P., “Q-learning”, Machine
Learning, 1992, 8(3):279–292.
[19] Wiegand, R., Liles, W., and Jong, G., “Analyzing
Cooperative Coevolution with Evolutionary Game Theory”, In
Proceedings of the 2002 Congress on Evolutionary
Computation, IEEE Press, Honolulu, 2002, pp. 1600-1605.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05)
0-7695-2416-8/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hoseo Univ. Downloaded on October 28,2020 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

