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“Programs should not only work, 
but they should appear to work as well." 

PDP-1X Dogma 

The PLANNER project is continuing research in natural and effective means for embedding knowledge in 

procedures. In the course of this work we have succeeded in unifying the formalism around one fundamental 
concept: the ACTOR. Intuitively, an ACTOR is an active agent which plays a role on cue according to a 

script. We use the ACTOR metaphor to emphasize the inseparability of control and data flow in our model. 

Data structures, functions, semaphores, monitors, ports, descriptions, Quillian nets, logical formulae, 

numbers, identifiers, demons, processes, contexts, and data bases can all be shown to be special cases 

of actors. All of the above are objects with certain useful modes of behavior. Our formalism shows 
how all of these modes of behavior can be defined in terms of one kind of behavior: sending messages | to 

actors. An actor is always invoked uniformly in exactly the same way regardless of whether it behaves 

as a recursive function, data structure, or process. 

  

"It is vain to multiply Entities beyond need." 
William of Occam 

"Monotheism is the Answer” 

The unification and simplification of the formalisms for the procedural embedding of knowledge has a great 

many benefits for us. In particular it enables us to substantiate properties of procedures more easily. 

INTENTIONS: Furthermore the confirmation of properties of procedures is made easier and more 

uniform. Every actor has an INTENTION which checks that the prerequisites and the context of the actor 

being sent the message are satisfied. The intention is the CONTRACT that the actor has with the 
outside world. How an actor fulfills its contract is its own business. By a SIMPLE BUG we mean an 

actor which does not satisfy its intention. We would like to eliminate simply debugging of actors 

by the META-EVALUATION of actorsto show that they satisfy their intentions. By this we do not 

necessarily mean a proof in the first order quantificational calculus for input-output assertions 

written in the first-order quantificational calculus. The rules of deduction to establish that 

actors satisfy their intentions essentially take the form of a high level interpreter for abstractly 

evaluating the program in the context of its intentions. This process [called META-EVALUATION] can 

be justified by a form of induction. In general in order to substantiate a property of the behavior 

of an actor system some form of induction will be needed. At present, actor induction for an actor 

configuration with audience E can be tentatively described in the following manner: 

1. The actors in the audience E satisfy the intentions of the actor 
to which they send messages. 

and 

2. For each actor A the intention of A is satisfied => the intentions 
for all actors sent messages by A are satisfied 

  
Therefore 

  

The intentions of all actions caused by E are satisfied 
(i.e. the system behaves correctly) 

Computational induction [Manna], structural induction [Burstal]], and Peano induction are a 
special cases of ACTOR induction. Actor based intentions have the following advantaqes: 

The intention is decoupled from the actors it describes. 

Intentions of concurrent actions are more easily disentangled. 
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We can more elegantly write intentions for dialogues between actors. 

The intentions are written in the same formalism as the procedures they 
describe. Thus intentions can have intentions. 

  

Because protection is an intrinsic property of actors, we hope to be able 
to deal with protection issues in the same straight forward manner as more 
conventional intentions. 

Intentions of data structures are handled by the same machinery as for all 
other actors. 

Syntactic Sugar 

"What's the good of Mercator's North Poles and Equators, Tropics, 
Zones and Meridian Lines?" 
So the Bellman would cry: and the crew would reply 
"They are merely conventional signs!" 

Lewis Carroll 

Thus far in our discussion we have discussed the semantic issues intuitively but vaquely. We would now 
like to proceed with more precision. Unfortunately in order to do this it seems necessary to introduce 
a formal language. The precise nature of this language is completely unimportant so long as it is capable 
of expressing the semantic meanings we wish to convey. For some years we have been constructing a series 
of languages to express our evolving understanding of the above semantic issues. The latest of these 
is called PLANNER-73. 

Meta-syntactic variables will be underlined. We shall assume that the reader is familiar with 
advanced pattern matching languages such as SNOBOL4, CONVERT, PLANNER<71, QA4, and POPLER. 

We shall use (%A M%) to indicate sending the message M to the actor A. We shall use [sT 82 .. 
sn] to denote the finite sequence si, s2, ...sn. A sequence s is an actor where @s 4%) is element i of 
sequence s. For example (%[a c b] 2%) is c. We will use ( ) to delimite the simultaneous synchronous 
transmission of more than one message so that (Al A2 ...An) will be defined to be (%A1 [A2 ... An]%). 
The expression [%al a2 ... an%] (read as "al then a2 ... finally send back an") will be evaluated by 
evaluating al, a2,..., and an in sequence and then sending back ["returning"] the value of an as the 
message. 

Identifiers can be created by the prefix operator =. For example if the pattern =x 
is matched with v, then a new identifier is created and bound to v. 

t tit "But 'glory' doesn't mean 
Alice objected. 

"When I use a word, "Humpty Dumpty said, in rather a 
scornful tone, "it means just which I choose it to mean-neither 
more nor less." 

"The question is," said Alcie, "whether you can make words 
mean so many different things." 

"The question is," said Humpty Dumpty, "which is to be 
master-that's all." 

Lewis Carroll 

a nice knock-down argument, 

Humpty Dumpty propounds two criteria on the rules for names: 

Each actor has complete control over the names he uses. 

All other actors must respect the meaning that an actor has 
chosen for a name. 

We are encouraged to note that in addition to satisfying the criteria of Humpty Dumpty. our 
names also satisfy those subsequently proposed by Bill Wulf and Mary Shaw: 

The default is not necessarilyto extend the scope of a name to any other 

actor. 

The right to access a name is by mutual aaqreement between the creating 
actor and each accessing actor. 

An access right to an actor and one of its acquaintances is decoupled. 

It is possible to distinguish different types of access. 
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The definition of a name, access to a name, and allocation of 
storage are decoupled. 

The use of the prefix = does not imply the allocation of any storage. 
One of the simplest kinds of ACTORS is a cell. A cell with initial contents V can be created 

by evaluating (cell V). Given a cell x, we can ask it to send back its content by evaluating (contents 
x) which is an abbreviation for (x #contents). For example (contents (cell 3)) evaluates to 3. We 
can ask it to change its contents to v by evaluating (x <- v). For example if we let x be (cell 3) 
and evaluate (x <~ 4), we will subsequently find that (contents x) will evaluate to 4. 

The pattern (by-reference P) matches object E if the pattern P matches (cell E) i.e. a “cell” 
[see below] which contains E. Thus matching the pattern (by-reference =x) against E 7s the same as 
binding x to (cell E) i.e. a new cell which contains the value of the expression E. We shall use => 
[read as "RECEIVE MESSAGE" ] to mean an actor which is reminiscent of the actor LAMBDA in the lambda 
calculus. For example (=> =x body) is like (LAMBDA x body) where x is an identifier. An expression 
(=> pattern body is an abbreviation for (receive(message pattern) body) where receive is a more general 
actor that is capable of binding elements of the action in addition to the message. 
Evaluating 

(%(=> pattern body) the-message%), i.e. sending 
(=> pattern body) the-message, 

will attempt to match the-message against pattern. If the-message is not of the form specified by pattern, 
then the actor is NOT-APPLICABLE to the-message. If the-message matches pattern, the body is evaluated. 

Evaluating (%(cases [fl f2 ... fn]) arg%) will send fT the message arg and if it 7s not applicable 
then it will send f2 the message arg, etc. until it findsone that is applicable. The message [#not - 
applicable] is sent back if none were applicable. Evaluating (%(cases {fl f2 ... fn}) ara%)will send 
f1 the message arg, ..., and send fn the message arg concurrently. 

The following abbreviations will be used to improve readability: 

(rules object clauses) for 
((cases clauses) object) 

(where object pattern-for-message body) for 
((=> [pattern-for-message] body) object) 

; for example (where 1+ 2) x (x +1)) is 4 

(let 
{ 

[x0 <= expression] 
[x} <= expression! ] 

[xn <™ expressionn]} 
body) for 

((=> [Exo = x7... =xn] body) 
expressione 
expressiony 

expresstonn) 
; for example 

(let 
{ 

[x <= (2+ 1) 
y <= (2 * 2) 

(x+ty)) is 7 

Sending Messages and Creating Actors 

The world's a theatre, the earth a state, 
Which God and nature do with actors fill. 

Thomas Heywood 1612 

Conceptually at least a new actor is created every time a message is sent. Consider sendina 
to a target T a message M and a continuation C. 
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(send T 
(message M 

[#continuation C])) 

The transmission (%T M%) is an abbreviation for the above where C is defaulted to be the caller. If 
the target T is the following: 

(receive 
(message the-body 

{#continuation =the-continuation]) 

the-body) 

then the-body is evaluated in an evironment where the-message is bound to M and the-continuation is bound 
to C. 

We define an EVENT to be a quadruple of the form [C T MN ] where C is the continuation of the 
caller,T the target, and M the message thereby creating a new actor N. We define a HISTORY to be a strict 
partial “order of events with the transitive ciosure of the partial ordering ->[read as PRECEDES] where 

[el ti ml ni] -> [c2 t2 m2 n2] if 

{nl} intersect {c2 t2 m2} is nonvoid 

The above definition states that one action proecedes another if any of the actors generated by the 
first event are used in the second event. The relation -> can be thought of as the "arrow of 
time." 7 Notice that we do not require a definition of global simultaneity; i.e. we do not require 
the two arbitrary events be related by ->. We define the BEHAVIOR of a history with respect to an 
AUDIENCE [ a set of actors] E to be the subpartial ordering of the history consisting of those quad- 
ruples [Cc T MN] where C or T is an element of the audience E. The REPERTOIRE of a configuration of 
actors is the Set of all behaviors of the configuration for all interpretations of the actors in the 
audience. The REPERTOIRE of a configuration defines what the configuration does as opposed to how it 
does it. Two configurations of actors will be said to be EQUIVALENT if they have the same REPERTOIRE 

We can name an actor H with the name A in the body B by the notation (label {[A <= H]} B). 
More precisely, the behavior Of the actor (label {[f <= (E f)]} 8) is -Jefined by the MINIMAL BEHAVIORAL 
FIXED POINT of (E F) i.e. the minimal repertoire F such a (E F) = F. In the case where F happens to 
define a function, it will be the case that the repertoire F is FSomorphic with the graph [set of ordered 
pairs] of the function defined by F and that the graph of F is also the least (lattice-theoretic) fixed 
point of Park and Scott. 

  

Many happy returns 

Many actors who are executing in parallel can share the same continuation. They can all send 
a message ["return"] to the same continuation. This property of actors ts heavily exploited in meta- 
evaluation and synchronization. An actor can be thought of as a kind of virtual processor that is never 
"busy" [in the sense that it cannot be sent a message]. 

The basic mechanism of sending a message preserves all relevent information and is entirely 
free of side effects. Hence it is most suitable for purposes of semantic definiton of special cases 
of invocation and for debugging situations where more information needs to be preserved. However, if 
fast write-once optical memories are developed then it would be suitable to be implemented directly 
in hardware. 

The following is an overview of what appears to be the behavior of the process of a running 
actor R sending a target T the message M specifying C as the continuation. If C is not explicitly 
specified by R then a representative of R must be constructed as the default. 

1: Call the banker of R to approve the expenditure of resouces by the caller. 

2: The banker will probably eventually send a message to the scheduler of T. 

3: The scheduler will probably eventually send a message to the monitors of T. 

4: The monitors will probably eventually send a message to the intentions of 
T. 

5: The intentions of T will probably eventually send the message M toT. 

6: T will finally attempt to get some real work done, 

There are several important things to know about the process of sending a message to an actor: 

1: Conceptually at least, whenever a target is passed a message a new actor 

156



is constructed which is the target instantiated with a message. When 2ver 
possible we reuse old actors where the reuse cannot be detected by the 
behavior of the system. 

2: Sending messages between actors is a universal control primitive in the 
sense that control operations such as function calls, iteration, coroutine 
invocations, resource seizures, scheduling, synchronization, and continuous 
evaluation of expressions are special cases. 

3: Actors can conduct their dialogue directly with each others: they do not 
have to set up some intermediary such as ports [Krutar, Balzer, and Mitchell] 
or possibility lists [McDermott and Sussman] which act as pipes through which 
conversations must be conducted. 

4: Sending a message to an actor is entirely free of side effects such as 
those in the message mechanism of the current SMALL TALK machine of Alan Kay, 
the port mechanism of Krutar and Balzer, and possibility lists. Being free 
of side effects allows us a maximum of parallelism and allows an actor to be 
engaged in several conversations at the same time without becomina confused. 

  

5: Sending a message to an actor makes no presupposition that the actor 
sent the message will ever send back a message to the continuation. The 
unidirectional nature of sending messages enables us to define iteration, 
monitors, coroutines, etc. straight forwardly. 

6: The ACTOR model is not an [environment-pointer, instruction-pointer] 
model such as the CONTOUR model. A continuation is a full blown actor 
[with all the rights and privileges]; it is not a program counter. There 
are no instructions [in the sense of present day machines] in our model. 
Instead of instructions, an actor machine has certain primitive actors 
built in hardware. 

Static Data Structures 

Data structures are special cases of ACTORS. For example consider the followina definition of 
the list nil: 

[nil <= 
(cases 

(=> [tout pgerqam] comment" 
;'to print nil: print the 
string '(list)' to stream" 

(out stream 
(print-open “(") 
(print-string "list") 
(print-close ")"))) 

(=> [#empty?] 
3"it is empty" 

true) 
(=> [#equivalent =x =overlord =the~-complaint-dept] 

(rules nil 

[(=> x 
true) 

(else 
(not-equal the-complaint-dept))])) 

(=> [#structure?] 
;"it is a structure" 

true) 

(=> [#next =the-complaint-dept] 
(exhausted the- complaint-dept) ) 
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We also define the function output: 
{output <= 

(=> [=x =stream] 
( x #out stream ))] 

The above is an operational definition of nil which is the null list. For example (nil #structure?) 
is true. Evaluating (output nil s) will cause "(list)" to be printed to the streams, However from an 
operational point of view nil is not very interesting because it is completely static. What we need to 
ask our-SelveSis what are the useful modes of behavier that are embodied in the usual notion of a list 
structure and define an object which behaves in this way. So let us try to give an operational definition 
of an arbitrary list: In order to do this we need to be able to make changes in the world. We will use 
the primitive actor CELL to realize these changes. 

Definition of LISP-like List Structure   

[cons-list <= 
(=> [(by-reference =first-of-list) 

(by-reference =rest-of-list) ] 
(cases 

{(=> [#first] 
;"the first element of 
the list is contents of first-of-list" 

(contents first-of-list))) 
(=> [#rest] 

;"the rest is contents of rest-of-list" 
(contents rest-of-list)) 

(=> [#first <- =new-first] 
(first-of-list <- new-first)) 

(=> [#rest <- =new-rest] 
(rest-of-list <- new-rest)) 

(=> [#constructor] 
;"a constructor for this 

kind of behavior is list” 
list) 

(=> [#next =the-complaint-dept] 
(stream 

(contents first-of-list) 

(=> [Hel PortSnt sf SE OTs e-complaint-dept] 
[% 

(overlord 
(first x) 
(contents first-of-list) 
the-complaint-dept) 

(overlord 
(rest x) 
(contents rest-of-list) 
the-complaint-dept)%]) 

(=> [#out =the-customer] 
(out the-customer 

;"to print the list first print open-delimiter (" 
(print-open "(") 

sprint that it is a list" 
(print-string "list") 

s"print the first element" 
(print (contents first-of-list)) 

s"print the rest of the elements in the list" 
(print-elements (contents rest-of-list)) 

;"the function print-elements is defined below" 
s"print the close )" 

(print-close ")")}) 
(=> [structure?] 

true) 

(=> Lempty?] 
false)}))] 
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The above definition is much more interesting. For one thing there is a subtle bug in that if cons-list 

is implemented as a lambda calculus closure then it will hang onto too much storage since any actor which 

hangs onto a piece of list structure will hang onto the creator of that list structure. We will deal with 

this bug later. But let's see how it works enyway: Let x be (cons-list 6 nil). Thus x is an instantiated 

CASES statement in the definition of CONS-LIST with first-of-list the name of a new cell which contains 

6 and rest-of-list the name of a new cell which contains nil. 

now (x #first) evaluates to 6. 
but suppose we execute ( x #first <- B) causing 

{#first <- B] to be matched against 

the patterns in the CASES till it matches 

[4first <- =new-first] 
now (x #first) evaluates to B. 

The reason is that there is a side effect in the evaluation of 

(x #first <- B) which changes the first element of x to B. 

We can define a function which will print the elements of objects which behave like lists 

as follows: 

[print-elements <= 
(=> [=supply =send-to] 

(next 
supply 

s"else let =element be the next element and 

=remainder-of-supply be the remainder of the supply" 

=> \ 

(stream =element =remainder-of-supply) 

(out send-to 
(print element) 
(print-elements remainder -of -supply) } 

(=> [#exhausted] 
:"F the supply is exhausted, do nothing” 

nothing))))] 

The function next calls up the supply and asks it for the "next". 

[next <= 
(=> tds =the-customer =the-complaint-dept] 

the-cus tomer 
(the-supply #next the-complaint-dept)))] 

Note that to get the second [and subsequent] elements out of a stream s the continuation received 

by n for (next s n) must be used. 
Let w be (cons-list 3 (cons-list 4 nil)). The following expression will create a circular 

structure when evaluated: 

(w #rest <- w) 
(output w s) 

The printing will look like "(list 33.3.3... to s and will never cease. It will never get to print 

the nyu 

The reader might be puzzled why we proceed in this "backward" way. Why don't we write a FUNCTION 

rest which takes the rest of a list like any ordinary programming language does? For example 
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(rest 
(cons-list 

3 
(cons-list B nil))) 

would be “(Vist B)". People who have taken the approach of attempting to define such functions have come 
to realize that it is desireable to have some independence in the representation of data objects so they 
have tried to define REST as a "polymorphic" operator. This means for example that REST would attempt 
to operate on vectors as well as lists. But then in any modeling situation in which a kind of object 
is desired for which we would like to be able to compute the REST, the extrinsic functional definition 
of REST would have to change. The definition of REST must keep changing in a nonmodular way in order to 
add new knowledge. For example we might create strings and want to be able to take the REST of a string. 
Of course the following definitions of REST and FIRST as functions will work: 

[rest <= 

(=> [=z] 
(z #rest))] 

[first <= 
(=> 

1 eirst))] 

These are in fact the definitions that we use. Note that we have two semantically related names: 
#REST and REST. We use #REST as a message and REST for the function which sends the message # REST 
to its argument. Making the above definitions of FIRST and REST and using them instead of directly 
passing the messages #first and #rest does, however, increase the modularity of our formalism and 
so we shall adopt them. For example the definitions of FIRST and REST enable us to monitor these 
operations. 

The reason that we have discussed the actor cons-list in such areat detail is that it provides 
a paradigm for the way in which we will define actors in general. For example our definition of EVAL 
[the actor which evaluates forms] is: 

[eval <= 
(=> 

[=x =the-environment] 
(x #eval the-environment) )] 

In other words EVAL passes the buck to each kind of expression which is expected to either know how 
to evaluate itself or to further delegate the responsibility. 

There remains the problem of dividing up the responsibility and knowledge in a reasonable way. 
At this point we have only a few heuristics to offer. We hope to become more definitive as we qain 
more practical experience with actors. In general we program each actor to field those requests for 
which it feels most qualified because the information needed is most immediately at hand. For example 
we have not included #length among messages fielded by list-structures but rather have preferred to write: 

[length <= 
(=> [=the-supply] 

(send 
the-supply 
(message [#length] 
[#alternate 

(=> [#not-applicable] 
(next 

the-supply 

(=> 
(stream ? =the-remaining-supply) 

;"the answer is" 
{Y + (length the-remaining-supply))) 

(=> [#exhausted] 
;"if the supply is exhausted then 0” 

0)))] 

There is a complete duality between operands and operators in the actor formalism. In many cases the 
precise organization seems more a matter of taste then anything else. 

The data type cons-list is the class of all actors that have the behavior defined above. Certain 

properties of the data type can be derived immediately from the definition. For example 
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(where (cons-list x y) =z 
(first z) is x) 

(where (cons-list x y) =z 
{rest z) is y) 

(where (cons-list x y) =z 
(z #first <- x') is z 
and z is equal to (cons-list x' y)) 

(where (cons-list x y) =z 
(z #rest <- y') is z 
and z is equal to (cons-list x y')) 

McCarthy has given the above formulas as axioms for lists. In his system the data type list is the class 
of all structures that obey the above axioms. However if nothing is known about the actor dragons then 

(where (cons-list x y) =z 
% 

(dragons z) 
(first (z #first <- x')) is unknown!%]) 

The reason is that dragons may have swallowed the list z and passed it to some actor which is still acting 
concurrently. Thus we don't know that the first of z is x' even though we just stored x' there: 

Now any object which behaves like a list can be used in place of a list. For example we can con- 
struct an object which is indistinquishable from an arbitrary list Z except that it will print out when- 
ever its first element is changed. To do this we will give a general definition of a monitor. 

Monitors 

Every actor can have monitors which get to read every message that is sent to the actor. Monitors 
are mainly useful for metering and debugging. A monitor can be constructed by 

(cons-monitor pattern in-going-action out-going-monitor) where pattern is the specification of the 
in going message, in-going-action is what to do, and out-aotna-monitor [which by the way is optional] an 
out going monitor. 

For example we can define a monitor for factorial that keeps addina one to the contents of number-of-calls- 
to-factorial every time that factorial is called and prints out the [input output] pairs on the stream 
history-of-factorial for each call. 

[monitor-for-factorial <z 
(cons-monitor 

(message =input) 
(number-of-calls-to-factorial 

<< 

(1 + (contents (number-of-calls-to-factorial)})) 
(cons~monitor 

(message =output) 
(out history-of-factorial 

(print [input output]})))] 

The system actor NEW-MONITOR is used to install a new monitor in an actor. For example (new-monitor 

factorial monitor-for-factorial) installs monitor-for-factorial as a new monitor for factorial. After 

which if (factorial 3) is evaluated then the contents number-of-calls-to-factorial will be increased 
by 3 and the stream history-of-factorial will be sent "[{1] 1]" then “[[2] 2]", and finally "{{3] 6]". 

Iteration 

Iteration is a special case of sending messages to oneself. We envisage a finite state machine 
with inputs on one side and outputs on the other. 
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  ‘aa = = 

if finished 
  

initial then send 
input----¥... >--sIthe continuation----+oytput[new-input] 

the 
final value       

The iteration statement is due to Nick Pippinger and has the syntax: 

(iterate name 
initial-input 
definition) 

For example an iterative factorial program can be written as: 

[iterative-factorial <= 

(=> [=n] 
(iterate counting-up 

[1 1] 
(=> [=counter =accumulator] 

(rules counter 
[(=> n accumulator) 
(else 

(counting-up 
counter + 1) 
counter * accumulator)))]))))] 

Notice that there are no assignment statements in the above program: 
The behavior of iterative-factorial is the same as if it were defined as follows: 

[iterative-factorial <= 

(= > [=n] 
(label 

{{counting-up <= 
(receive 

(message [=counter =accumlator] 
[#continuation =c]) 

(rules counter 
(=> n 

accumlator) 
(else 

(send 
counting-up 
(message 

(counter + 1) 
(counter * accumulator )] 

[#continuation c])))]))J} 
(counting-up 1 1)})] 

We use 

(cycle name 
body) 

as an abbreviation for 

(iterate name 

a [] body)) 

Meta-Evaluation 

Meta-~evaluation is the process of binding actors to their intentions and then evaluating the 
actors abstractly on abstract data. Using actor induction we will show that if the meta-evaluation of 

a configuration of actors succeeds then the intentions of the actors will be satisfied in the subsequent 
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execution of the configuration. If the meta-evaluation cannot proceed it will stop at the point where it 
cannot confirm that an actor always satisfied its intention and ask for help. At this point there are 
several possibilities: 

There really is an inconsistency: 

The inconsistency is between the way the actor is being attempted to be 
used and its intention. 

The inconsistency is between the intention of the actor and its actual 
implementation. 

The intentions for a configuration of actors are not mutually consistent. 

There is no inconsistency but: 

There are hidden assumptions being made about actors that should be made 
explicit. 

There is hidden domain dependent knowledge that the actor is usina which 
should be made explicit. 

The intentions are not being sufficiently explicit as to why they are 
expected to be satisfied. 

Convergence of Actors 

Meta-evaluation can be used to show that certain inputs must eventually generate outputs. The 
basic technique is the principle of induction over well-founded partial orders invented by mathematicians 
and elegantly formalized by John von Neumann. The technique is a special case of actor induction. At 
present, actor induction for an actor configuration with input audience I and output audience 0 can be 
tentatively described in the following manner: 

J. There is a well-founded input-output partial order P. That is, there is 
no sequence s of distinct elements of P such that for every i we have (s i) 

{P}H(s (i + 1)). 

2. The actors in the input audience I assign an element p of P to each 
input message m. We will denote this by the notation P<m,p>. 

3. For each actor A if Pm ,p> is received by A, then A must send a messaqe 
P<m',p'> such that p{P}p. 

  

Therefore 

  

Every message from the input audience must eventually result in a message 
being sent to the output audience. 

A Simple Example Illustrating 
How A Diligent But Moderately Dumb Apprentice Can Help 
  
  

We would like to give a simple concrete example to illustrate our techniques in action. Consider 
the probelm of writing a program to shift the gears of a truck with a manual transmission. We apologize 
for the necessity for introducing new syntax but the following concepts are crucial to the discussion which 
follows: 

1: Definitions 
[x <= 

(=> [ey] 
body) ] “as 

is actor syntax which at a rough intuititve level means: define an actor x which, when it is 

called with an argument (to which y is bound) executes body. 
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(=> =y1 body1) 
(=> =y2 body2) 

roughly means: take x, and if it matches yl, execute body!l; otherwise if it matches y2, 
execute body 2, etc... 

3: Intentions 
X <= 

(intention [n] 
il 
definition 
i2, 

is an elaboration of 1, meaning that when x is called with n, then il is the intention of 
the incoming call and i2 is the intention when x calls out again. 

Our first try at a shift procedure might be: 

Primitive-shift-to: when called with a target gear checks to see if it is 1, 2, 3, or 4 and calls the 
appropriate select; upper-left, upper-right, or lower-right respectively. 

[primitive-shift-to <= 
(=> [=target-gear] 

(rules target-gear 
=> ] 

(select-upper-left)) 
=> 

(select-lower-lTeft))} 

(=> 3 
(select-upper-right) ) 

(=> 4 
(select-lower-right))))] 

Now we consider the various select routines and their intentions. Each of the select functions has an 
incoming intention that the clutch be disengaged. Furthermore each of them has code (delimited by *) to 
do the selecting. When a selector calls out, we fully intend for the truck to be in the aear appropriate 
to that selection. 

[select-upper-right <= 
(intention [] 

(clutch disengaged) 
*code-for-select-upper-right* 
(in-gear 3))] 

[select-upper-left <= 
(intention [] 

(clutch disengaged) 
*code-for-select-upper-left* 
(in-gear 1))] 

[select-lower-right <= 
(intention [ 

(clutch disengaged) 
*code-for-select-lower-right* 

(in-gear 4))] 

[select-lower-left <= 
(intention [] 

(clutch disengaged) 
*code-for-select-upper-right* 
(in-gear 2))]J 

Our apprentice notices that for each one that there is a physical constraint that the clutch must be 
disengaged before shifting. He queries us abut this and so we decide to modify the function PRIMITIVE- 
SHIFT-TO to first disengage the clutch. 
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[primitive-shift-to <= 
(=> [=target-gear] 

(disengage clutch) 
(rules target-gear 

=> ] 

(select-upper-left) ) 
(=> 2 

(select-lower-left)) 
(=> 3 

(select-upper-right) } 
(=> 4 

(select-lower-right))))] 

(engage ciutcn)) | 
now the code for primitive-shift-to is to first disengage the clutch, then do the selecting as before, 
and finally engage the clutch. 

We also write functions to disengage and engage the clutch. 
[disengaye <= 

(intention [=clutch] 
(ciutch engaged) 
*code-for-disengage* 
(clutch disengaged))] 

[engage <= 
(intention [=clutch] 

(clutch disengaged) 
*code-for-engaqe* 
(clutch engaged) )] 

Now our apprenctice is mollified. However, the engineers dealing with the transmission come to us with 
some additional constraints. For example to select third gear the constraints are now that the clutch 
must be disengaged and the truck must be in aither second or fourth gear. The other constraints are 
similar. 

[select-upper-right <= 
(intention 

(and 
(clutch disengaged) 
(or 

{in-gear 2) 
(in-gear 4))) 

*code-for-select-upper-right* 
(in-gear 3))] 

[select-upper-left <= 
(intention 

(and 
(clutch disengaged) 
(stopped) ) 

*code-for-select-upper-left* 
(in-gear 1))] 

[select-lower-right <= 
(intention 

(and 
(clutch disengaged) 
(in-gear 3)) 

*code-for-select-lower-right* 
(in-gear 4))] 

[select-lower-left <= 
(intention 

(and 
(clutch disengaged) 
{or . 

(in-gear 1) 
(in-gear 3))) 
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*code-for-select-lower-left* 
(in-gear 2))] 

The new requirements say that (temporarily at least) the truck has to be stopped to shift into gear 1 and 
no gears can be skipped in shifting while running. (Note you can shift directly from any gear to first if 
the truck is stopped.) So we have to write some new procedures to meet these new intentions. We now write 
our top-level shifting function: 

SHIFT-TQ: when called with a target gear considers in order the following rules for the target gear: 

If it is first gear, then- do a primitive-shift-to first aear. 

If it is either one greater than the current gear or one less than the current 
gear then do a primitive-shift-to the target gear. 

If it is greater than the current gear then shift-to one less than the target 
gear and then primitive-shift-to the target gear. 

If it is less than the current gear then shift-to one greater than the target 
gear and then primitive-shift-to the target gear. 

[shift-to <= 
(=> [=target-gear] 

(rules target-gear 
=> 

(primitive -shift-to 1)) 
(=> (either 

(currens -gear + 1) 
(current--gear - 1)) 

(primitive-shift-to target~-gear)} 
(=> (greater (current-gear) ) 

(shift-to (target-gear-1)) 
(primitive-shift-to target-gear) ) 

(=> (less (current-gear)) 
(shift-to (target-gear + 1)) 
(primitive-shift-to target-gear))))] 

We ask our apprentice to meta-evaluate our program. It thinks for a while and sees two problems: 

It can only shift to gear 1 if the truck is stopped. 

Tt should not be asked to shift to the gear that it already is in. [the 
procedure shift-to does not work if it is asked to shift to the current gear. ] 

We decide to give the following intention to SHIFT-TO: If the target-gear is first gear then the truck 
must be stopped; otherwise the target-gear must be 2, 3, or 4 and not be the current gear. 

[shift-to <= 
(intention [=target-gear] 

(rules target-gear 
=> ] 

(stopped) ) 
(=> (or 2 3 4) 

(target-gear # current gear)) 
(else 

(not-applicable))) 
*code-for-repeatedly-shift-to* 
(in-gear target-gear))} 

To summarize we have used intentions in the following somewhat distinct ways: 

As a contract that the actor has with its external environment. How it carries 
the contract is its own business. 

As a formal statement of the conditions under which the actor will fullfill its 
contract. 
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The above example does not deal with all of the computational issues that our apprentice will 
be faced with. For example it does not have sophisticated data structures and has no concurrency or 
parallelism. We deal with these problems in the technical report. 
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