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Chapter 1 

Introduction 

The set of valid inputs to any program can be regarded as a form of computer language — 

an input data language |[Pra75, 5]. The set of possible outputs can similarly be regarded as 

a computer language. Furthermore, a program can be thought of as a translator of some 

input data language to an output data language. The central thesis of this dissertation 

is that this language oriented view of programs is not only valid but that it leads to the 

establishment of a new declarative style of programming in which program design becomes 

language design. 

The practical way of exploring the implications of the language oriented view of programs 

and of assessing the potential of the language oriented style of programming is to design 

and implement a programming language and system that provides support for the new 

programming paradigm. For this purpose, the design and implementation of a programming 

language, called META-LISP, is presented here, together with a number of case studies of 

language oriented programming in META-LIsP. In addition to providing evidence for the 

main thesis of this dissertation, the case studies serve also as points of comparison with the 

functional and the logic programming paradigms. 

1.1 The Language Oriented View 

Establishing the claim that any program can be regarded as a translator from an input data 

language to an output data language is simple enough. It depends solely on providing a 

broad enough notion of a data language. Formally a language is just a set of sequences of 

symbols drawn from an alphabet. If we allow this alphabet to include not only characters 

but key clicks, flashes on a screen or any discrete well defined behaviour that a computer
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can exhibit in a sequence,! then the claim that the input as well as the output can be 

regarded as languages will be established. Considering further that a translation is just a 

mapping, and that a program can be thought of as a mapping from its input to its output, 

the above claim turns out to be just a variant of the black box model of programs with 

sequential input and output. 

The more interesting question is why it is worthwhile to regard programs as translators 

and how it leads to the establishment of a new programming paradigm. To answer these 

questions it is necessary to consider the possible implications of the language oriented view 

of programs for the program design process itself. 

Thinking about programs as translators leads naturally to considering the possibility of 

programs being designed and built as translators. Drawing on the experience of building 

translators using syntax-directed techniques, we can begin to envisage what would be in- 

volved in the design of programs as translators: first, an explicit grammatical description 

of the input language of the program would need to be provided; second, the grammati- 

cal structure imposed on the set of valid inputs by this description could then be used as 

a framework to prescribe the appropriate actions to produce the desired output. From a 

methodological point of view both steps are valuable. In conventional programming the 

grammatical specification of the set of valid inputs to a program can only be part of the 

documentation. It can contribute greatly to the clarity of a programming style if this can 

be incorporated into, and in fact help to structure, the program itself. 

On the face of it, the second step appears to be problematic. In most translator writing 

systems (TWS), the semantic actions that are used to prescribe the output of the translator 

are written in the host language (e.g. LISP, C, Pascal or Prolog etc.) of the tool. Needless 

to say, none of these languages explicitly supports the design of programs as translators. 

When using such tools in practice, all the clarity that characterises the overall design of a 

translator can be swamped by the complexity and often opacity of the way semantic actions 

are specified. 

Maintaining the clarity and uniformity of the design of programs as translators requires a 

translator writing tool in which the semantic actions can be specified in a way that preserves 

the language oriented view of programs. This can be achieved, firstly, by viewing all non- 

primitive procedures in the semantic actions as programs/translators in their own right, and 

secondly, by stipulating that these procedures are to be elaborated as translators in their 

own right. In other words, what is required is that the design of these procedures starts from 

an explicit grammatical description of their input language and uses the structure thereby 

‘this excludes multiple asynchronous sources of input as well as parallel output.
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imposed on the input as the framework for specifying further actions etc. Accordingly, a 

programming system to support a language oriented style of programming would have to be 

a translator writing system that allows the elaboration of all the non-primitive procedures 

that appear in the semantic actions as translators in their own right. The programming 

language and system, called META-LISP, was designed specifically as such a system. Its 

design is reviewed in the next section. 

1.2. The Design of META-LISP 

LISP was chosen as the implementation language for the envisaged language oriented pro- 

gramming system. Given LISP’s reputation as an “implicit meta-language” (i.e. a language 

to be used to define other languages and translators [Ing66, 115-6]) the choice of LISP to 

implement a meta-language seemed all the more appropriate. The affinity between the 

intended system and LISP goes beyond considerations of ease of implementation. This is 

reflected in the name of the programming language. The Meta in META-LISP is intended 

both as an indication of the meta-linguistic power of the system as well as the fact that it 

is built on top of LISP. 

Bootstrapping was used extensively not only in the construction of a compiler for the 

language but in its design and documentation in the form of a denotational style meta- 

circular interpreter. The primary objective of the development of a meta-circular interpreter 

for META-LisP has been to provide a complete operational definition of the language in the 

same way that a meta-circular definition plays a role in the definition of LISP. [AlI78, 162] 

The main goal of the development of the compiler has been efficiency. Both the interpreter 

and the compiler have been tested on a range of sample programs, including all the case 

studies presented here, with identical results. 

The primary design objective for META-LISP was to provide linguistic support for the 

language oriented paradigm in the form of an appropriate translator writing system. This 

left many design decisions underdetermined. Although it made specific demands on the 

Semantic Language it left a free choice for the other main component of the system, the 

underlying grammatical formalism. 

The choice of underlying grammatical formalism is always a critical factor in determin- 

ing the efficiency of the operations of the translators definable by a TWS. In preference 

to Context Free Grammars (or their restricted forms) the Top Down Parsing Language 

(TDPL) described by Aho and Ullman [AU72] proved to be a particularly attractive choice 

of underlying grammatical formalism. The definitional power of context-free grammar can
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be regarded as excessive, in the sense that it is difficult to envisage the consequences of such 

definitions. The primary reason for this is that CFG can be ambiguous. Another, related 

problem is that backtracking may become necessary at any point. This, in itself, can render 

any attempt at envisaging possible forms of the sentences of a language defined by a CFG 

inherently incomplete, in the absence of machine support. In contrast, the main advantage 

of TDPL lies in the fact that, as a language definitional formalism, it is tied to a — trans- 

parent and efficient — top down parsing algorithm in which backtracking is limited. Equally 

important is the fact that it is an unambiguous grammatical formalism. Consequently, it 

is easy to envisage the possible forms that representative sentences of the language can 

take, even without machine support. Naturally, TDPL could only be a starting point for 

the design of a grammatical formalism suitable to be the basis of a general purpose TWS. 

The most fundamental enhancement of the original language definitional formalism was the 

addition of capabilities of specifying arbitrary (nested) list structures and facilities to test 

and select specific components of the input. Further enhancements include the allowance 

for a limited form of explicit left-recursion. 

For the Semantic Language of META-LIsP, the second main component of the language, 

the natural choice was a simple applicative language with a limited number of extra fea- 

tures and a non-standard notion of application. The standard notion of application is the 

application of a function (or procedure) to given arguments. When programs or even pro- 

cedures are viewed as translators from an input language to an output language, we can 

talk sensibly only about a single “argument” that they could receive viz. a sequence of 

symbols which may or may not form a sentence of their input language. Accordingly, in 

the Semantic Language of META-LISP, the input parameters to the procedures appearing 

in the semantic action are not given as “arguments” but are first made into a single input 

list which is then passed to the procedure as its single input. It is then the responsibility 

of this procedure to determine the structure of this input and produce appropriate output 

in the process. What this amounts to is that the calling mechanism employed in the Se- 

mantic Language is Syntax-Directed Translation. Procedure calls with a given number of 

specific arguments can be regarded as special cases of this concept of procedure application 

when the input has a particularly simple structure. In addition to the ability of invoking 

procedures as described, the Semantic Language of META-LISP contains features that allow 

the construction of arbitrary list structures from given components (like the backquote of 

LISP), assignment and reference of attributes, and the use of procedural parameters. 

Discounting the addition of a control primitive for forcing backtracking, the model of 

computation of META-LISP is essentially the same as in syntax-directed translation. The
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only significant difference lies in the way procedures in the semantic actions are invoked, 

and the way they are defined, viz as translators. The result is a new kind of programming 

language which has, as its distinguishing feature, the use of syntax-directed translation as 

its parameter passing mechanism. 

MeEtTA-LISP’s syntax-directed parameter passing mechanism can be contrasted with the 

calling mechanism of modern functional languages like ML, [Wik87], which utilises pattern 

matching. As syntax-directed translation properly subsumes pattern matching, META-LISP 

can offer capabilities not possessed by functional languages, like ML: these include support 

for data abstraction|ASS85, 72], (see page 42) representation independent or level-wise pro- 

gramming see [AII78, 53-5], as well as support for parser construction. The conflicting 

requirements of pattern matching and data abstraction have been discussed by Wadler in 

[Wad87, 307]. “Pattern matching depends on making public a data type representation, 

while data abstraction depends on hiding the representation.” The desirability of facilities 

for language processing can be judged from the point made by Wikstrom that a parser 

generator is a tool that should accompany an ML system for production use [Wik87, 294]. 

What is common to both ML as a functional language and META-LIsP as a language ori- 

ented programming language, is that they both make commitments about which quantities 

are inputs and which are outputs. This can be contrasted to logic programming languages, 

such as Prolog, that do not make such commitments [Red86, 3]. The multidirectionality 

of Prolog is a consequence of the fact that Prolog uses unification as its calling mechanism 

[DF P86, 45]. It gives capabilities to Prolog not possessed by ML, or Meta-Lisp for that 

matter. Through the use of operator declarations Prolog also has explicit language defini- 

tional capabilities. In terms of expressive power, Prolog is clearly superior. In fact Prolog’s 

expressive power can be said to be so great, that it may even be regarded as excessive, in 

the sense, that Prolog programs can give rise to computations that the programmer had 

never thought of, due to full backtracking and multidirectionality. In most cases, this leads 

to the need to rely on the impure facilities, such as the cut, to systematically cut out the 

excess. Mode declarations are also used for the purpose of limiting the definitional power of 

a particular clause. The most important design decisions for META-LISP have in fact been 

informed by the attempt to avoid excesses of definitional power. The most significant of 

these decisions have been not to use Context-Free Grammars as the underlying grammatical 

formalism. It can be argued, that CFG’s themselves suffer from an excess of definitional 

power, that is analogous to that of Prolog, viz unlimited backtracking. In terms of support 

for data-abstraction Prolog does not fair any better than ML. 

In terms of expressive power META-LISP as a programming language occupies a kind
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of mid-way point between functional and logic programming languages. META-LISP has 

greater expressive power for defining the set of valid input to a program than say ML. 

(MeTa-Lisp can define it as a language, whereas ML can only define it as a pattern). 

Prolog on the other hand can be said to define the set of valid inputs to a program as the 

set of unifiable terms. This is a far greater, and less comprehendable set than what can be 

defined using META-Lisp. The fact that META-LISP, in terms of expressive power occupies 

the middle ground between ML and Prolog does not mean that META-LISP was designed 

with this objective in mind. To some extent it is a consequence of a conscious attempt to 

avoid excesses of definitional power. However, there were other, broader motivations that 

have prompted its development. As an indication of the aspirations of the current work, 

the following section discusses some of the motivations for it. 

1.3. Motivation 

The idea that every program implicitly defines an input data language led K. John Gough 

to suggest that “the ideas of language processing can and should be applied to the design of 

almost any program” and then go on to contend that “in all situations the input language 

of a program should be formally defined, and then implemented by systematic techniques”. 

[Gou88, 2] The language oriented view is very similar to his position, except for requiring 

language definitions to be given in a form that allows the generation of appropriate language 

processors by “automated” means. META-LISP provides just such means. 

Perhaps the richest source of motivation for the development of language oriented pro- 

gramming is the LISP tradition. Abelson and Sussman in their classic textbook The Struc- 

ture and Interpretation of Computer Programs invite us to regard “almost any program as 

the evaluator for some language” and suggest that “the technology for coping with large- 

scale computer systems merges with the technology for building new computer languages, 

and computer science itself becomes no more (and no less) than the discipline of construct- 

ing appropriate descriptive languages.” [ASS85, 294-5] Accepting the suggestion that any 

program can be regarded as an evaluator (or interpreter) for a “special-purpose language” 

for dealing with a given problem domain, leads naturally to a consideration of the use of 

translator writing tools to define these special-purpose languages as the language oriented 

way of writing programs as interpreters. 

In discussing possible improvements to LISP, John McCarthy at the 1980 LISP Confer- 

ence considered the question whether syntax-directed translation should be a feature to be 

added to LISP or whether it should be the basis of a new language. McCarthy’s response
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to this question was that “both the functional form of computation that LISP has now and 

syntax directed features are wanted in one language.” [McC80, vii]. META-LisP is proposed 

as just such a language. 

J.L. Bentley in the Programming Pearls column of the ACM Journal under the title 

“Little Languages” [Ben86] discusses the implementation of a program for the typesetting 

of pictures as a compiler for a “little language” using a compiler-compiler. In a companion 

paper [BK86] the advantages of designing a “little language” and implementing it as a com- 

piler are identified in that it “gives users a concise specification of how to use the program, 

provides an organising framework for implementation, and often enables the implementor 

to use tools to build the program.” 

Similar views are expressed by the developers of the EQN typesetting system for mathe- 

matics: “Defining a language, and building a compiler for it with a compiler-compiler system 

seems like the only sensible way to do business. Our experience with the use of a grammar 

and a compiler-compiler has been uniformly favourable. If we had written everything into 

code directly, we would have been blocked into our original design. Furthermore, we would 

have never been sure where the exceptions and the special cases were. But because we have 

a grammar, we can change our minds readily and still be sure that if a construction works in 

one place it will work everywhere.” [?] These are admirable software engineering qualities 

indeed. The real motivation for the development of language oriented programming is to be 

able to do similarly, in a much wider domain than previously thought possible, by turning 

the methodology and technology of the “little languages” strategy into a general purpose 

programming methodology and technology. 

To sum up: the LISP tradition invites us to view programs as interpreters for special- 

purpose languages. Experience in the development of scripting languages (e.g. EQN, GRAP, 

PIC etc) teaches us the value of viewing programs as “compilers” for “little languages.” As 

both interpreters and compilers are but translators, the language oriented view of programs 

can be seen to encompass, as well as generalise both previous approaches. 

1.4 Related Work 

1.4.1 Towards Language Oriented Programming 

The potential of extending syntax-directed techniques to be used as a general-purpose pro- 

gramming system had been investigated before. In this respect the works of David Sand- 

berg on the LITHE programming language [San82], Stefan Feyock on Syntax Programming 

[Fey84], Yoshiyuki Yamashita and Ikuo Nakata on Coupled Context Free Grammars | YN88]
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deserve special mention. 

LITHE, an experimental programming language, combines the ideas of syntax-directed 

translation and the concept of classes. The LITHE system allows for the formulation of a 

semantic action “as a string that is translated into a sequence of actions by using other rule 

action pairs”. In this regard LITHE can be said to contain the most important technical 

contribution that makes possible the extension of syntax-directed techniques into a general 

purpose technique. This possibility, however, is not exploited fully as the work is aimed 

primarily at extensibility by allowing the user to “freely choose his own syntax”. 

Feyock’s starting point is “the strong formal similarity of BNF (Backus Normal Form) 

productions to Horn clauses”. He goes on to describe a “new programming technology that 

is to syntax analysis and parser construction as formal logic is to logic programming (LP)” 

which is then accordingly named Syntax Programming. Feyock could be credited spotting 

the potential for developing a new programming technology based on the idea of syntax 

directed translation. However, this objective is not fulfilled since the semantic actions are 

written, again, in the host language of the parser (LISP or Pascal). 

The strong formal similarity of Prolog and BNF rules has received much attention in 

recent years. It seems that we have come full circle. When Prolog was first introduced, 

its proof strategy was made plausible by comparison with top down parsing. See [Kow79, 

Chapter 3]. By the end of the eighties, the new generation of computer scientists were 

more readily familiar with Prolog, so that parsing technology and attribute grammars are 

viewed frequently from a logic programming viewpoint. In a recent paper [DM88], entitled 

“A Grammatical View of Logic Programming”, Pierre Deransart and Jan Maluszynski have 

succeeded in showing that the declarative reading and the procedural reading of pure logic 

programs can be complemented by a grammatical reading where the clauses are considered 

to be rewrite rules. Their aim has been to show that “this point of view facilitates transfer 

of expertise from logic programming to other research on programming languages and vice 

versa.” One particularly interesting example of this “transfer of expertise” is provided by 

the paper, in the same volume, by Yoshiyuki Yamashita and Ikuo Nakata [YN88] that 

introduces the idea of a Coupled Context Free Grammar and shows that these are duals 

of equivalent logic programs. This work is of special interest here as CCFG is put forward 

explicitly as an “extension of the syntax-directed translation schemes or attribute grammars. 

Although these schemes have provided excellent tools in the field of program translations, 

their expressive powers are too small to be used as general purpose programming systems.” 

I would like to close this subsection by mentioning the work of Stephen Adams at the 

University of Southampton. In terms of its aspiration, his work is the closest to the present
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work. This is immediately evident from the very title of his report: Towards Language- 

Oriented Programming. |[Ada90]. In the report Adams describes language-oriented pro- 

gramming as the “definition and use of ‘designer’ programming languages.” (page 18) He 

proposes a Language oriented methodology which involves 

e Understanding of all different phenomena in terms of language. 

e Definition and delineation of programming language fragments. 

e Re-use of language components. 

Adams also envisages an environment supporting language oriented programming as one 

that would provide tools for defining language fragments as well as the mechanism of com- 

bining them to produce new language fragments. In the report, he goes on to investigate 

the design options for a module system that can be used to combine language fragments. 

He also investigates partial evaluation as the means of efficient execution of languages and 

language tools. 

1.4.2 Language Development Tools 

The evolution of language development tools has its origin in Backus’s invention of a nota- 

tion for describing the syntax of programming languages. This notation was an overnight 

success. Backus himself expected at the time that he would have a solution just as neat 

for dealing with Semantics. [Wex81, 89] Although his hopes were not to be fulfilled, the 

notation that he invented was soon incorporated into practical compiler-compilers. 

One of the earliest example of such a system is Meta-II [Sch64]. It is of interest in that 

the underlying grammatical formalism that it uses is very similar to the Top-Down Parsing 

Language. 

Jed Marti’s Little META Translator Writing System [Mar83] is interesting in that it is 

written in LISP as part of the Portable Standard LISP Project. There are a number of 

similarities between this system and META-LISP: 

e the translators it produces are modifiable without complete recompilation 

e the system was built using bootstrapping 

e it compiles into LISP 

The most important difference between litthe META and MeEtTa-LispP is that the former is 

aimed exclusively at compiler and parser generation. The possibility of defining some of
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the functions used in the semantic actions in terms of little META rules is not even being 

considered. 

One of the most widely used compiler-compilers is YACC [Joh79]. For a practical 

introduction to compiling techniques using YACC see [Ben90]. YACC is used to generate a 

LALR(1) parser from context-free grammars specified in the appropriate form. Each rule 

of the grammar has semantic actions associated with it. These are written in C. There 

are three improvements that have been recently proposed for YACC. They are of interest 

in the present context, not only for what they provide, but what they reveal about the 

‘shortcomings’ of YACC. 

The first improvement, proposed by Purtilo and Callahan in their NewYacc system, 

concerns the retention of the parse tree after a sentence has been accepted by YACC. 

The parse tree can then be traversed to carry out additional actions. These actions are 

controlled by rewrite rules associated with language productions in the NewYacc grammar 

extensions. The system “presents the look and feel of attribute grammar without sacrificing 

the simplicity of using normal yacc declarations.” [PC89]. 

The second improvement concerns the incremental generation LALR(1) parsers. Hor- 

spool describes an incremental parser generator, called ILARL, which permits the user to 

“modify a grammar one rule at a time and reporting problems to the user as soon as they 

are apparent” [Hor89, 128-9]. It also allows the user to specify, or even change, the start 

symbol of the grammar. 

The proposed third improvement to YACC was to provide the designer of a YACC 

grammar a method of tracing a parser as it uses the grammar. See [FSO91]. 

All these features — the look and feel of attribute grammars, the incremental construction 

of parsers as well as tracing facilities — which were absent in compiler-compilers such as 

YACC are incoporated into the META-LISP system, viewed as a compiler-compiler. In fact, 

since the parsing strategy supported by META-LISP is top-down, the trace can be more 

meaningful, than in the case for bottom up parsers. The trace of a bottom up parse gives 

no indication of the overall structures being explored. It only shows how a successful parse 

can be built up from the bottom up. In the context of language oriented programming, try 

to imagine what a bottom up trace of the execution of a program would look like. First 

the lowest level actions would be seen, and only at a later stage would the trace indicate 

that in fact, what these lowest level operations all add up to is, say, reading a line of input. 

Whereas, in a top down trace, we would know right away that the program is trying to read 

a line of input which then involves sub tasks which lead to further, more elementary tasks, 

etc.
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1.5 Dissertation Outline 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Chapter 9 

introduces basic background material such as the concepts of formal languages, 

their definition, parsing and translation. The Top Down Parsing Language, which 

forms the basis of the underlying grammatical formalism of META-LISP is also 

introduced in this chapter. 

provides an overview of META-Lisp. Following two introductory examples, 

MeEtTA-LIsP is then introduced in two sections. First the the language defini- 

tional formalism is introduced, then the Semantic Language. 

presents a number of case studies designed to illustrate the process of language 

oriented programming in META-LISP. Section | presents simple examples of list 

processing in ML as well as META-LISP. Section 2 develops a complete program 

for Symbolic Differentiation. Section 3 presents a language oriented design of the 

program. Section 4 reuses parts of the differentiation program for approximating 

the roots of differentiable functions using the Newton-Raphson method. 

contains two further case studies. The first presents solutions to a simple path 

finding problem given both in Prolog and MrETa-Lisp. The final case study is a 

program for the graphical display of trees. Although this program can be thought 

of as a “compiler” for a “little language,” it is shown that standard compiler- 

compiler technology would not be adequate as the vehicle of its implementation. 

illustrates how MeETA-LISP can be used to write denotational language defini- 

tions. The denotational definition of the language of a simple Calculator will be 

developed alongside the description of a denotational style interpreter for it in 

Meta-Lisp. The primary objective of this chapter is to introduce the format of 

denotational definitions in META-Lisp. The same format will be used in Chapter 

7 in defining the semantics of META-LIsP itself. 

formalises the operational semantics of META-LIsP in the form of a denotational 

style meta-circular interpreter. 

discusses the strategy that was used in the implementation of the META-LISP 

system, its current status and future developments. 

provides comparisons with other paradigms and programming languages includ- 

ing ML, Prolog and LISP. The conclusion is formulated as much on the basis of 

a retrospective critique of META-LISP as on the basis of a prospective look at 

future work aimed at improving the technological and the linguistic support that 

can be given to language oriented programming.
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Chapter 2 

Background 

The aim of this chapter is to review the basic concepts and terminology of formal languages, 

their parsing and translation. Much of the material is related to syntactic issues of formal 

languages, i.e. concerning the rules for determining which sequences of symbols are well 

formed sentences of a given language and which are not. Issues concerning the semantics 

or meaning of formal languages will not be dealt with, except for introducing the notion 

of translational semantics. The definitions in this chapter follow the treatment of formal 

languages in [AU72]. 

The Chapter is organised as follows. Section 1 introduces the concept of a grammar 

as the means of specifying the syntax of a language. A grammar, however, does not only 

define a language, but also imposes a structure on the set of sentences of a language. This 

structure can be illustrated pictorially in the form of a syntax or derivation trees. The 

introduction of the concept of a derivation tree in Subsection 2.1.2, provides the means of 

examining some of the structural differences that can arise between equivalent grammars. 

In Subsection 2.1.3 the discussion centers on the difference between left recursive and right- 

recursive formulation of equivalent grammars. The process of determining if a sequence of 

symbols can be generated by a grammar is usually referred to as parsing or syntax analysis. 

Parsing methods are discussed briefly in Section 2, followed by the definition of an efficient 

and transparent formalism for language definition and syntactic analysis, known as the Top- 

Down parsing Language (TDPL) which forms the core of MeTa-Lisp. The last section of 

this chapter introduces the idea of syntaz-directed translation and its formalisation in the 

form of attribute grammars. 

13
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2.1 Language Definition 

From a formal point of view, a language is simply a set of sequences of symbols drawn from 

an alphabet. Sequences of symbols drawn from an alphabet that belong to a given language 

are usually called sentences. 

Definition 2.1 Let & be a set of symbols, called an alphabet. A sequence s = t1,t2...ty 

of symbols drawn from some alphabet © is called a string over the alphabet i. The empty 

sequence of symbols is referred to as the empty string, denoted (). Let &* denote the set of 

all strings over the alphabet © including the empty string. 

A language L (over the alphabet ©) is a subset of /* i.e. it is a set of strings over an 

alphabet. 

2.1.1 Grammars 

The rules that determine the construction of the well formed sentences of a language are 

usually given in the form of a grammar. 

Definition 2.2 A grammar is a 4-tuple G = (N,%, P,S) where 

1. N is a finite set of nonterminal symbols or syntactic categories. 

2. is a finite set of terminal symbols, disjoint from N, called an alphabet 

3. P is a finite set of productions or rules of the form a > §, where a is a sequence of 

terminal and/or nonterminal symbols with at least one non-terminal symbol, and 3 

is a possibly empty sequence of terminal and/or nonterminal symbols. 

A. Sis a distinguished symbolin N called the sentence or the start symbol. 

Definition 2.3 A sentential form is a possibly empty sequence of terminal and/or nonter- 

minal symbols that can be formed according to the rules of a grammar. 

Definition 2.4 A terminal string is a possibly empty sequence of terminal symbols. 

Definition 2.5 A derivation or (generation) step according to a given grammar G is a step 

by which from a given sentential form another sentential form is obtained by substituting in 

the sentential form an occurrence of the left-hand side of a rule of the grammar by the right 

hand side of the rule. Formally, a relation = (to be read as directly derives) on (N U%)* 

can be defined as follows: if a@y is a sentential form and @ — 6 is a production in P, then 

apyzady.
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Definition 2.6 A reduction step according to a given grammar G is a step by which from a 

given sentential form another one is obtained by substituting in the given sentential form an 

occurrence of the right hand side of a rule of the grammar G by its left hand side. Formally, 

a relation = (to be read as directly reduces) on (N U%)* can be defined as follows: if ady 

is a sentential form and 8 > 6 is a production in P, then adysapy. 

Clearly a reduction step is the inverse of a derivation step in the sense that if ash then 

bea. 

Definition 2.7 A derivation of a sentential form a is a sequence of derivation steps that 

starts with the sentence symbol of the grammar and leads to the sentential form a. The 

usual notation for a nontrivial derivation is SS a, where + denotes the transitive closure 

of the relation 2: 

Definition 2.8 A reduction of a sentential form a is a sequence of reduction steps that 

starts with the given sentential form a and leads to the sentence symbol of the grammar. 

The notation for a reduction is aes, where € denotes the transitive closure of the relation 

=. 
G 

Definition 2.9 A sentence generated or defined by a grammar G is a terminal string, w 

which is derivable from the start symbol of the grammar G, or equivalently, that is reducible 

to the start symbol of the grammar G. 

Definition 2.10 The language an by a grammar G, denoted Oo .. , is the set of sen- 

tences generated by G, ie. L(G) = ) = {w/v}, or equivalently, £ ) = {wlwts}, 

Grammars can be classified according to the format of their productions. Let G = 

(N,%, P,S) be a grammar. 

Definition 2.11 G is said to be 

1. Right-linear if each production in P is of the form A > xB or A > z, where A and B 

are in N, i.e. nonterminal symbols, and z is in &*, i.e. is a possibly empty sequence 

of terminal symbols. 

2. Context-free if each production in P is of the form A — a, where A is in N, i.e 

is a nonterminal symbol, and a € (NU%)* ie. a is a possibly empty sequence of 

nonterminal and/or terminal symbols. 

3. Contezt-sensitive if each production in P is of the form a > f, where |a| > ||.
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A grammar with no restrictions as above is called unrestricted. 

Example 2.1.1 An example of a context-free grammar Go = ({F,T, F}, 

{a,+,*,(,)}, P, &) where P consists of 

Eo T+FE 1 

ko T 2 

T + FxT 38 

To F 4A 

F + (E£) 5 

Fooa 6 

£(Go), the language defined by the grammar Go, is the set of arithmetic expressions that 

can be built up using the symbols a, +, *, (, and). 

Example 2.1.2 An example of a derivation in Go would be 

E> T+E byl EsST+E 
=> F+E by4 ToF 

=> atk by 6 Foa 

=> a+T by2 EFEoT 

=> a+ F*eT by 3 ToFs«T 

=> ataxT by6 Foa 

=> ataxF by4 TOF 

4 ataxa by6 Foa 

In the last step a terminal string is obtained, i.e. a sentence of the language defined by 

our grammar is derived. 

2.1.2 Derivation Trees 

A derivation of a terminal string w according to a grammar G exhibits a proof that w € 

L(G), ie. that it is a sentence of the language generated by the grammar G. In that 

proof the production rules of the grammar play the role of axioms. A derivation begins 

with the most general syntactic category of the grammar, i.e. the sentence symbol, and 

by proceeding down through more specific sentential forms, ultimately a terminal string is 

reached. Proofs of this kind are usually referred to as top down proofs. 

The distinctive feature of this kind of proof that it is goal-directed in the sense that the 

nonterminal symbols introduced in the derived sentential form represent further subgoals 

for the derivation as a whole.
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Example 2.1.3 An example of a reduction in Gp could be constructed by starting with 

the terminal string a+a*aand attempting to reduce it to the start symbol of the grammar: 

ata*xa = Ftaxa by6 Foa 

= Ttaxa by4 TOF 

<= T+Fxa by6 Foa 

= T4+Tx«a by4 TOF 

<= T4iTs«F by6 Foa 

= T+T by3 ToT*F 

= T+E by3 EoT 

<= E byl FoOT+E 

The reduction of a terminal string w according to a grammar G to the sentence symbol 

exhibits a proof that w € L(G). A reduction begins with the most specific sentential 

forms and proceeds upwards towards more general sentential forms, ultimately reaching the 

sentence symbol of the grammar. Proofs of this kind are usually referred to as bottom up 

proofs. In contrast to top down proofs bottom up proofs are data directed in the sense that 

the availability of specific data provides guidance for the proof process. [Win83, page 91] 

In a grammar it is possible to have several derivations that are equivalent, in the sense 

that all derivations use the same productions at the same places, but in different order. 

Example 2.1.4 An example of a second derivation in Gp would be 

BE => T+eE byl EOT+HE 

T+T by2 BFOT 

T+F*«T by3 ToF«T 

T+F«F by4 ToOF 

T+Fxea by6 Foa 

Ttaxa by6 Foa 

Fraxa by4 TOF 

ataxa by6 Foa 

4 
s
e
 

a 
a 

a 

The definition of when two derivations are equivalent is a complex matter for unre- 

stricted grammars, but for context-free grammars a convenient graphical representative of 

an equivalence class of derivations called a derivation tree can be defined. [AU72, page 139] 

A derivation tree, or parse tree, for a context-free grammar G = (N,%, P,S) is a labeled 

ordered tree in which each node is labeled by a symbol from NUNU{()}. If an interior node
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is labeled A and its direct descendants are labeled X1,X2,...,X,, then A + X1,Xo,...,X_ 

is a production in P. 

HOT+E TOF 

B E 

He 

    
Figure 2.1: Parse Tree for Left to Right Derivation 

Definition 2.12 A labeled ordered tree D is a derivation tree or (parse tree) for a context- 

free grammar G(A) = (N, %, P, A) if 

1. The root of D is labeled A. 

2. If D,...,D; are the subtrees of the direct descendants of the root and the root of D; 

is labeled X;, then A — X1,X2,...,Xn is a production in P. D; must be a derivation 

tree for G(X;) = (N, 5, P, X;) if X; is a nonterminal symbol, and D; is a single node 

labeled X; if X; is a terminal symbol. 

3. Alternatively, if D; is the only subtree of the root of D and the root of Dy, is labeled 

{), then A — () is a production in P.
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Example 2.1.5 Let us illustrate how to draw a syntax tree for the derivation of the sen- 

tence a+a*a of the grammar Go of Example 2.1.1. To begin with, the distinguished 

symbol F of the grammar is designated as the root of the syntax tree. To indicate the first 

derivation a branch is drawn downward from it. A branch is the set of lines together with 

the nedes (the symbols) below the line. Reading from left to right, the nodes of the newly 

introduced branch form the string corresponding to the right hand side of the production 

used in the derivation step (FE > T + E). 

To indicate the second derivation step a branch is drawn downward form the end node 

of the syntax tree labeled T' representing the application of the rule T + F. The end nedes 

of a syntax tree are those nodes which have no branches emanating downward from them. 

Continuing in this manner yields the syntax diagrams shown in Figure 2.1 

HOT+E EoT ToOF«T 

B
h
 

G
7
8
)
 

B
H
 

B
h
 

LE
H 

G
h
 

[+
] 

Foa TOF 

      
Figure 2.2: Parse Tree for Right to Left Derivation 

By drawing syntax diagrams as above the syntactic structure of an input sentence can
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be determined from the sequences of productions used to derive that string. 

It is most instructive to draw the syntax diagram for the alternative derivation of the 

sentence a+ax*a of L(G) to illustrate the notion of equivalence of derivations, shown in 

Figure 2.2. 

Both derivations lead to the construction of the same syntax tree, indicating the equiv- 

alence of the two derivations. 

The first derivation is an example of a leftmost derivation, i.e. the strategy of attempting 

to expand the leftmost nonterminal in any given sentential from. The second derivation 

illustrates the strategy of attempting to expand the rightmost nonterminal in any given 

sentential form, which for this reason is known as a rightmost derivation. In general the 

equivalence of all derivations of a given sentence of a context-free grammar is not guaranteed. 

Nor indeed is the uniqueness of leftmost or rightmost derivations. 

Definition 2.13 A context-free grammar is said to be ambiguous if there is at least one 

sentence w in £(G) with two or more distinct leftmost (or rightmost) derivations. [AU72, 

I. p. 143] 

2.1.3 Syntax Structures 

Definition 2.14 If two grammars generate the same language, the grammars are said to 

be equivalent. 

Example 2.1.6 shows a grammar that generates the same language as the grammar in 

2.1.1. The two grammars differ only two rules 1 and 3. Considering rule 1 it is apparent, 

that in the second grammar, the left-most nonterminal of the rule is the same as the non- 

terminal on the left-hand side of the arrow. Such a rule, is called left recursive. The 

parse-tree for the derivation of the sentence a + a* a according to the second grammar is 

shown in Figure 2.3. The parse tree shown in Figure 2.2 can be seen to ‘lean’ towards the 

right. Whereas the parse-tree corresponding to the derivation of the same sentence that 

uses the grammar with the left recursive rules, can be seen to lean towards the left. The 

structural differences between the syntax structures that these equivalent grammars impose 

on the sentences of the languages that they define become significant, when interpretations 

are assigned to them. 

Consider the following expression: 

a—a—a@
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By convention, a — @ — a is equivalent to (a — @) — a = —a. When an operand has the same 

operators to its left and right, conventions are needed for deciding which operator takes 

that operand. 
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Figure 2.3: Parse Tree for Left Recursive Grammar 

Example 2.1.6 An example of an equivalent grammar G, = ({E,T, F}, 

{a,+,*,(,)},P, Z) where P consists of 
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£(G1), the language defined by the grammar Go, is the set of arithmetic expressions that 

can be built up using the symbols a, +, *, (, and). 

Definition 2.15 An operator is said to be left associative if an operand which has the 

operator in question on both sides of it is taken by the operator on the left. 

For example, the arithmetic operator for subtraction is left associative, whereas exponen- 

tiation is right-associative. That is to say, the expression 27473 is treated as (2 ~ (4 * 

3)). 

Left-associative operators are generated by left associative grammars, like G,. Right- 

associative operators are generated by right-recursive grammars. 

2.2 Parsing 

The process used to determine if a string can be generated by a given grammar is called 

parsing. Most parsing methods are either top-down or bottom up. In top down parsing 

derivation steps are used in going from the start symbol towards the terminal symbols. 

In bottom-up parsing reduction steps are used in going from terminal symbols towards 

the start symbol of the grammar. Parsing methods can also be classified as deterministic 

or predictive, in which case choices made in selecting derivation or reduction steps can 

be guaranteed to be right. Parsing which involves choices between rules that cannot be 

determined unambiguously, are called non-deterministic. When there are choices, it may 

be that a wrong route is taken, in which case backtracking occurs, to explore other possible 

choices. Deterministic parsing is to be preferred to non-deterministic methods. There 

are several methods that can be used to ensure that the parsing can proceed without 

backtracking. These normally involve reformulations of the grammar. Left-factoring is one 

of these techniques. It will be introduced next. 

2.2.1 Left-Factoring 

Left factoring is a grammar transformation technique that is used to make a grammar suit- 

able for predictive parsing.[ASU86, 178-9] It involves the identification of common prefixes 

in alternative productions for a given nonterminal and rewriting the grammar in a way 

that will factor out this common prefix and thereby defers the otherwise non-deterministic 

choice of which alternative to expand first. 

For example, consider the productions
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S — if E then S else S (2.1) 

| if EB then S (2.2) 

These two production share a common prefix. The right choice between the alternatives 

cannot be made by examining the first input symbol. Neither is it possible to determine 

the number of symbols that need to be examined to make the right choice. The right choice 

can only be made once the common prefix of the two productions, if E then S has been 

successfully expanded. At that point, if the next input token is else than the first rule 

is applicable, otherwise it is the second. In general, if A + of and A — a2 are two 

productions for A, and the input begins with a sequence of terminal symbols derivable from 

a, we cannot tell, in advance which rule is applicable. It is possible to rewrite this grammar 

in such a way that the decision needs only be made after the common prefix has been 

expanded. At that point the right rule can be selected deterministically. The left-factored 

form of the example is 

S + if EthenS' (2.3) 

S' -» else S (2.4) 

| § (2.5) 

(2.6) 

or in general it takes the form: 

A > aAl (2.7) 

AT > file (2.8) 

2.2.2 Limited Backtrack Top-Down Parsing 

This section introduces a formalism for language definition and syntactic recognition that 

js tied to a particular tep down, left to right parsing algorithm with limited backtracking. + 

In appearance, the formalism will be indistinguishable from a Context-Free Grammar. 

The difference will be in the way alternatives for a given nonterminal will be treated. Back- 

tracking will be limited by making the order in which alternatives for a given nonterminal 

appear matter for the syntactic recognition process that will take place. That is to say, the 

alternates for each nonterminal will be tried exhaustively until one alternate has been found 

The following account is based on chapter 6 of[AU72]
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which derives a prefix of the remaining input. Once such an alternate is found, no other 

alternates will be tried. Of course, the “wrong” prefix may have been found, in which case 

the algorithm will not backtrack but will fail. Fortunately, this aspect of the algorithm is 

rarely a serious problem in practical situations, provided the alternates are ordered so that 

the longest is tried first. 

According to the technique introduced here, nonterminals are treated as string-matching 

procedures. To illustrate this technique suppose that that a,...a, is the input string and 

that a partial left parse have been successfully generated matching the first ¢ — 1 input 

symbols. If nonterminal A is to be expanded next, then the nonterminal A can be “called” 

as a procedure, with input w = a;...@,. If A derives a terminal string that is a prefix of 

W = G;4j;41-...d, then A is said to succeed on input w = a;...d,. Otherwise, A fails on 

input W= Gj...Gy. 

These procedures call themselves recursively. If A was called in this manner, A itself 

would call the nonterminals of its first alternate, a,. If a, failed, then A would restore the 

input string to what it was when A was first called, and then A would call a2, and so forth. 

If a; succeeds in matching w = a;a;41...a,, then A returns to the procedure that called it 

and sets the input string to the unmatched portion w = ag41...@n. 

The difference between the current algorithm and a fully backtracking one is that should 

the latter fail to find a complete parse in which a; derives ajaj41...a,, then it will backtrack 

and try derivations beginning with productions A > aj41, A > aj+42, and so forth, possibly 

deriving a different prefix of a;...a, from A. This algorithm will not do so. Once it has 

found that a; derives a prefix of the input and that the subsequent derivation fails to 

match the input, the parsing algorithm returns to the procedure that called A, reporting 

failure. The algorithm will act as if A can derive no prefix whatsoever of a;...a,. Thus 

the algorithm may miss some parses and may not even recognise the same language as its 

underlying Context Free Grammar defines. 

Consider the following example. 

Example 2.2.1 If 

S — Ae 

A > alab 

are productions and the alternates are taken in the order shown, then the limited backtrack 

algorithm will not recognise the sentence abc. The nonterminal S is called with input abe 

will call A with abc. Using the first alternate, A reports success and sets the input string 

to be. However, c does not match b, so S reports failure on input abe. Since A reported
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success the first time it was called, it will not be called to try the second alternate. Note 

that this difficulty can be avoided by writing 

A > abla 

The “top-down parsing language”, TDPL, introduced in this section can be used to describe 

parsing procedures of this nature. A statement (or rule) of TDPL is a string of one of the 

following forms: 

A> BC/D 

A-a 

where A, B,C’ and D are nonterminal symbols and a is a terminal symbol, the empty 

string, or a special symbol f (for failure). 

Definition 2.16 A TDPL program P is a 4-tuple (N,T, R,S), where 

1. N and 7 are finite disjoint sets of nonterminals and terminals. 

2. Ris a sequence of TDPL statements such that for each A in N there is at most one 

statement with A to the left of the arrow, and 

3. S isin N is the start symbol. 

A TDPL program can be described as a set of procedures (the nonterminals) which are called 

recursively with certain inputs. The outcome of a call will either be failure, (no prefix of 

the input is matched or recognised) or success (some prefix of the input is matched). 

The following sequence of procedure calls results from a call of a statement of the form 

A— BC/D, with input w: 

1. First, A calls B with input w. If w = xz’ and B matches z, then B reports success. 

A then calls C with input 2’. 

(a) If 2’ = yz and C' matches y, then C’ reports success. A then returns success 

and reports that it has matched the prefix ay of w. 

(b) If C does not match any prefix of 2’, then C reports failure. A then calls D 

with input w. Note that the success of B is undone in this case. 

2. If, when A calls B with input w, and B cannot match any prefix of w, then B reports 

failure. A then calls D with input w.
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3. If D has been called with input w = uv and D matches u, a prefix of w, then D 

reports success. A then returns success and reports that it has matched the prefix 

u of w. 

4. If D has been called with input wand D cannot match any prefix of w, then D reports 

failure. A then reports failure. 

Note that D gets called unless both B and C’ succeed. Note also that if both B and C’ 

succeed then the alternate D can never be called. 

The special statements A > a, A — (), and A > f are handled as follows: 

1. If A > a, is the rule for A with a € T and A is called on an input string beginning 

with «, then A succeeds and matches this a. Otherwise, A fails. 

2. If A > () is the rule for A, then A succeeds whenever it is called and always matches 

the empty string. 

3. If A > f is the rule, A fails whenever it is called. 

The notion of a nonterminal “acting on an input string” can be formalised as follows: 

Definition 2.17 Let P= (N,T,R,S) be a TDPL program. A set of relations are defined 

4 from nonterminals to pairs of the form (z|y,r), where x and y are in 7* and r is either s 
P 

(for success) or f (for failure). The metasymbol | is used to indicate the position of the 

current input symbol. The subscript p will be dropped wherever possible. 

1. If A> () isin R, then A> (lw, s) for all w € T™. 

2. If A f isin R, then A>(\w, f) for all w ¢ T*. 

3. If A> aisin R, with a € T, then 

(a) 

(b) 

A>>(alx,s) for all 2 € T*. 

A> (ly, f) for all those y € T* (including ()) which do not begin with the symbol 

= 

A. Let A> BC/D be in R. 

mtnt+l 
(a) A (xyz, s) if 

i. B(xlyz,s) and 
mn 

ii, C=>(ylz, 8).
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4 

(b) A>(ulv,s), witht =m+n+p+1, if 

i. BS (ay, s) and 

ii. C>(ly, f), and 

iii. D> (ulv, s), where uv = zy. 

4 

(c) A>(|zy, f), withi=m+n+p+1, if 

i. B>(2x\y,s) and 

ii. C>(ly, f), and 

iii. D> (\ey, f), 

(d) A” ES (ely, s), if 

i. BS (\xy, f) and 

ii. D> (aly, s). 

(ce) ATT Ue, f), if 

i. B> (|xy, f) and 

ii. D> (|x, f). 

The relations = do not hold except when required by (1)-(4). 

Case (4a) takes care of the case in which B and C’ both succeed. In (4b) and (4c), B 

succeeds, but C' fails. In (4d) and (4e), B fails. In the last four cases, D is called and 

alternately succeeds and fails. Note that the integer above the arrow indicates the number 

of “calls” which were made before the outcome is reached. Observe also that if A= (aly, f), 

then z = (). That is, failure always resets the input pointer to where it was at the beginning 

of the call. 

Definition 2.18 Let AS (ly, r), if and only if A> (z\y, r) for some n > I. 

The language defined by P, denoted L(P), is {w|SS (wl, s)andweT*}. 

Example 2.2.2 Let P be the TDPL program ({5, A, B,C}, {a,b}, R,S) where R is the 

sequence of statements 

S + AB/C 

A> @ 

B+ CB/A 

C > 5b
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The action of P on the input string aba using the relations defined above is as follows. 

To begin, since S + AB/C is the rule for S, S calls A with input aba. A recognises the 

first input symbol and returns success. Using part (3) of the previous definition we can 

write A+ (alba, s). Then, S calls B with input ba. Since B > C'B/A is the rule for B, 

the behaviour of C’ on ba will have to be examined. We find that C’ matches b and returns 

success. Using (3) we write C> (bla, s). 

Then B calls itself recursively with input a@. However, C’ fails on a and so C+ (la, f). 

B then calls A with input a. Since A matches a, A+ (al, s). Since A succeeds, the second 

call of B succeeds. Using rule (4d) we write BS (al, s). 

Returning to the first call of B on input ba, both C’ and B have succeeded. Thus, by 

using rule (4a) we can write BS (bal, s). 

Now returning to the call of S, both A and B have succeeded. Thus, S matches aba 

and returns success. Using rule (4a) we can write S4(abal, s). Thus, aba is in £(P). 

It is not difficult to show that £(P) = ab* + a. 

An important property of a TDPL is that the outcome of any program on a given input 

is unique. The interested reader can find the proof in [AU72, 461]. 

2.2.3. Extensions to TDPL 

The notation introduced for a TDPL to this point was designed for ease of presentation. 

In practical situations it is desirable to use more general rules. For this purpose, extended 

TDPL rules will be introduced. Their meaning will be defined in terms of the basic rules: 

Definition 2.19 1. Therule A> BC'is taken to stand for the pair of rules A > BC/D 

and D — f, where D is a new symbol. 

2. The rule A > B/C is taken to stand for the pair of rules A > BD/C' and D — (). 

3. The rule A > B is taken to stand for the rules A > BC and C — (). 

4. The rule A Aj Ag...A,, for n > 2, is taken to stand for the set of rules A > A, By, 

By —> Ao Ba, sey By_-3 —> An-2Bn_2, 

5. The rule A > aj/a2/.../a,, where a;s are strings of nonterminals, is taken to 

stand for the set of rules A > B/C, C, > Bo/Co,...,Cn_-3 4 Bn—2/Cn—2,Cn_2 7 

Bn-1/Bn, and By > ay, By > a2, ...B, > ay. If n=2, these rules reduce to 

A- B,/Bo, By > a1, By > ag. For 1 <i< nif ja;| = 1, B; can be let as a; and 

the rule B; — a; can be eliminated .
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6. The rule A > aj/a2/.../a,, where the a’s are strings of nonterminals and terminals, 

is taken to stand for the set of rules, A > aty/ah/.../al 
nn} 

and X, — a for each 

terminal a, where a‘ is a; with each terminal a replaced by X, 

Henceforth extended rules of this type will be allowed in TDPL programs. The defini- 

tions above provide a mechanical way of constructing an equivalent TDPL program that 

meets the original definition. 

These extended rules have natural meanings. For example, if A has the rule A > 

Y,¥o...Y,, then A succeeds of and only if Y; succeeds at the input position where A is 

called, Y2 succeeds where Yj left off, ¥Y3 succeeds where Y9 left off, and so forth. 

Likewise, If A has the rule A > ay/az/.../a,,, then A succeeds if and only if a, 

succeeds where A is called, or if a, fails, and a2 succeeds where A is called, and so forth. 

2.2.3.1 Left Recursion 

TDPL can also be extended to handle left recursive rules: Let A > B/AC, be in R. 

(7) (a) i. If BS(zly,s), 

ii. C3 (ujlv;, s), for some 1 <i< k, where uv, = y and ujv; = vj_1 and 

iii. C>(lvp, f), 

then A> (euy -+-Uz|Ug, 8), With r= m+ny...ng+ pt 1, 

(b) If 

i. Br(|u, f), 
then A’ (lu, f). 

In case (a) B succeeds and then C’ succeeds k times successively before failing A then 

returns successfully. 

In (4b) and (4c), B succeeds, but C fails. In (4d) and (4e), B fails. In the last four 

cases, B is called and alternately succeeds and fails. Note that the integer above the arrow 

indicates the number of “calls” which were made before the outcome is reached. 

To allow extended forms of left recursive rules add to the extension rules the following:
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(8) The rule A> B/Aa,/---/Aa, for n >= 2, where a;s are strings of terminals and or 

nonterminals, is taken to stand for the set of rules A> AC/D and C' > ay/---/ay. 

With this extension the left recursive verison of grammar Gy for arithmetic expressions 

on page 21 can be interpreted as an extended TDPL program. Note that other rules for 

extensions may be needed to translate the definition for C’ in the above rule for extension.
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2.3 Syntax-Directed Translation 

This section introduces the concepts and terminology of Syntax-Directed Translations. 

Translations will be first explored from an abstract point of view and then extensions 

to the basic definitional framework to enhance its expressive power will then be considered. 

Definition 2.20 A translation is a set of pairs (x,y) of finite-length strings, where z is 

a string over some finite input alphabet and y is a string over some finite output alphabet. 

The strings « and y are called input string and output string, respectively. y is said to be 

the translation of «. The set of all strings x, for which there is a translation y, is called 

the input language. Analogously, the set of all strings y, for which there is a corresponding 

input string 2, is called the output language. 

A Translation Scheme is a grammar with a mechanism for producing an output for each 

sentence generated. A transducer is a recogniser which can emit a finite-length string of 

output symbols on each move. 

2.3.1 Translation and Semantics 

It has been pointed out that the formal notion of a language introduced earlier is devoid of 

any concept of meaning. With the introduction of the notion of translation this restriction 

can be removed. One way of conceiving of semantics, or meaning, of a language is to 

associate with each sentence of the language another string which is to be taken to describe 

the meaning of the original sentence. This way of construing the task of defining the 

semantics of a formal language can be made to work if, in a given context, we can regard 

the output language of the translation to be semantically primitive. Such specification of 

the meaning of a language is known as translational semantics. 

2.3.2 Syntax-Directed Translation Schemata 

The problem of finitely specifying an infinite translation is similar to the problem of spec- 

ifying an infinite language. A device which given an input string z, calculates an output 

string y such that (x,y) is in a given translation T, is called a translator for T. There are 

several features which are desirable in the definition of a translation: 

1. The definition of the translation should be readable. That is to say, it should be easy 

to determine what pairs are in the translation. 

2. It should be possible to mechanically construct an efficient translator for that trans- 

lation directly from the definition.
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Features which are desirable in translators are 

1. Efficient operation. For an input string w of length n, the amount of time required to 

process w should be linearly proportional to 2. 

2. Small size. 

3. Correctness. It would be desirable to have a small finite test such that if the translator 

passed this test, this would be a guarantee that the translator works correctly on all 

inputs. 

One formalism for defining translations is the syntax-directed translation schema. [AU72, 

I pp. 215-216] Intuitively, a syntax-directed translation schema is simply a grammar in 

which translation elements are attached to each production. Whenever a production is 

used in the derivation of an input-sentence, the translation element is used to help compute 

a portion of the output sentence associated with the portion of the input sentence generated 

by that production. 

Example 2.3.1 Consider the following translation schema which defines the translation 

{(z,2")|« € {0, 1}*}. That is, for each input 2, the output is « reversed. The rules defining 

this translation are 

Production Translation Element 

qj) 50s S=80 

(2) 5318 S=S81 

B) 530 S=¢ 

An input-output pair in the translation defined by this schema can be obtained by generating 

a sequence of pairs of strings (a, 3) called translation forms, where a is an input sentential 

form and @ and output sentential form. The Translation form (S,S) is considered first. 

The first rule can then be applied to this form. To do so, first S is expanded first using the 

production S + 0S. The output sentential form S is then replaced by SO is in accordance 

with the translation element S = SQ. For the time being, the translation element can 

be thought of simply as a production S — SQ. The translation form (05,50) is thus 

obtained. S can be expanded in this new translation form by using rule (1) again to obtain 

(005,500). Rule (2) can then be applied, to obtain (0015,5100). Applying rule (3) results 

in the translation form (001,100). No further rules can be applied to this translation form 

and thus (001, 100) is in the translation defined by this translation schema.
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A translation schema T defines some translation 7(7). A translator 7(7) can be built 

from the translation schema that works as follows. Given an input string z, the translator 

finds (if possible) some derivation of z from S using the productions in the translation 

schema. Suppose that S = ag > a1 > O2 => ...@,, = z is such a derivation. Then the 

translator creates a derivation of translation forms 

(410, Bo) = (041, 61). = (ny Bn) 

such that (a0, 80) = (5,5), (an, Gn) = (2, y), and each ; is obtained by applying to (;-1 

the translation element corresponding to the production used in going from a,_; to a; at 

the “corresponding” place. The string y is an output for z. Often the output sentential 

form can be created at the time the input is being parsed (as in META-LIsP). 

Example 2.3.2 Consider the following translation scheme which maps arithmetic expres- 

sion of £(Go) into fully parenthesised prefix notation: 

Production ‘Translation Element 

BoOT+E E=(4TE) 

ET E=T 

ToFsT T=(«FT) 
TOF T=F 

P(E) F=E 
Foa Foa 

The translation element FE = (+ T E) is associated with the production E + T+E. The 

translation element says that the translation associated with E on the left of the production, 

is first an opening parenthesis, followed by a plus sign, the translation of T, the translation 

associated with E on the right of the production, and a closing parenthesis. 

The output for the input @+a@*@ can be determined by finding a leftmost derivation of 

a+a*a from E using the productions of the translation scheme. Then the corresponding 

sequence of translation forms is computed as shown: 

(EE) => (T+E,(+T E)) 

(P +E, F E)) 

(a+ E,(+@E)) 

(a@+T,(+4T)) 

(a+ Fx*T),(+4(* FT))) 

(a+a*F),(+ a («a F))) 

(a+axa,(+ a (*aa))) J
U
D
Y
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A parse tree showing the translations at each node is called an annotated parse tree. 

The annotated parse tree for the above translation is shown in figure 2.3.2. 

    
IZ = (+ a (# a a))      

  

  

  

AH EAA 
Figure 2.4: Annotated Parse Tree 

The translation schemata in Examples 2.3.1 and 2.3.2 are special cases of an important 

class of translation schemata called syntaz-directed translation schemata. 

Definition 2.21 A syntaz-directed translation schema (SDTS for short) is a 5-tuple T = 

(N,%,A, R, S), where 

1. N is a finite set of nonierminal symbols. 

. Dis a finite input alphabet. 

. Ais a finite output alphabet. 

. Ris a finite set of rules of the form A > a, 3, where a € (NUD)*, 8 € (NUA)*, 

and the nonterminals in § are a permutation of the nonterminals in a. 

. 5 is a distinguished nonterminal in N, the start symbol. 

Let A — a, 8 be a rule. To each nonterminal of a there is associated an identical 

nonterminal of 3. If a nonterminal B appears only once in @ and f, then the associa- 

tion is obvious. If B appears more than once, we use integer superscripts to indicate the 

association. This association is an intimate part if the rule. For example, in the rule 

A> BOCBO, BC) BOC, the three positions in B©)CBC) are associated with positions 

2,8, and 1, respectively, in B@) BOC,
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We define a translation form of T as follows: 

1. (5,5) is a translation form, and the two S’s are said to be associated. 

2. If (aA, o/ AP’) is a translation form, in which the two explicit instances of A are 

associated, and if A > y,7‘ is a rule in R, then (ay, a’7'8") is a translation form. 

The nonterminals of y and +’ are associated in the translation form exactly as they 

are associated in the rule. The nonterminals of a and § are associated with those of 

a’ and 7’ in the new translation form exactly as in the old. The association will again 

be indicated by superscripts, when needed, and this association is an essential feature 

of the form. 

If the forms (wAf, a’ Af’) and (ay, a’y’B"), together with their associations, are related 

as above, then we write (aA, a’ AB") (ay, a''3'). We use + , a and 3 to stand for the 

transitive closure, reflexive transitive closure, and k-fold product of 2: As is customary we 

shall drop the subscript T whenever possible. 

The translation defined by T, denoted 7(T), is the set of pairs 

{(x, y)|(S, S)(@,y),@ € &* and y € A*} 

This is not very realistic. In terms of expressive power it is rather limited. The transla- 

tion elements can be generalised to be of arbitrary functions of the translations associated 

with the nonterminals of the underlying grammar. 

2.3.3 Attribute Grammars 

An attribute grammar is context-free grammar in which each grammar production A > a 

has associated with it a set of semantic rules of the form 6 := f(c1,¢2,...,¢%) where f isa 

function and either 

1. b is a synthesised attribute of A and c1,C2,...,c, are attributes belonging to the 

grammar symbols of the production, or 

2. b is an inherited attribute of one of the grammar symbols on the right side of the 

production, and cy, ¢2,...,¢, are attributes belonging to the grammar symbols of the 

production 

An attribute 6 is said to depend on c 1, c2,...,c,. The functions in semantic actions cannot 

have side-effects.
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Synthesised attributes are used to pass information from the leaves towards the root. 

The value of an inherited attribute, on the other hand is defined in term of attributes at 

the parent and/or siblings of that node.



Chapter 3 

Overview of META-LISP 

META-LISP is a programming language that combines the functional model of LISP with 

the syntax-directed model. As in the case of all functional languages, function application 

is the major computational mechanism. Modern functional languages like HOPE and ML, 

use pattern matching as their parameter-passing mechanism. That is, as the mechanism to 

select the appropriate statement from the body of the function from a set of statements on 

the basis of the values of the actual arguments. The main advantage of the resulting pattern 

directed invocation is that it combines a limited form of testing of the appropriateness of 

the arguments of a function, with the selection of their components, it also selects the 

transformation appropriate for the arguments. 

META-LISP, in contrast, uses syntaz-directed invocation. A META-LIsP function takes 

a single argument, a list. The set of valid input lists is defined by a grammar. Each 

tule of this grammar has semantic actions associated with it. These rules are not only 

used to specify the set of valid inputs to a given function, but also to prescribe arbitrarily 

complex transformations of components of the input. These components, therefore, can 

be “preprocessed” by the syntax-directed translation that is used to accept them, even 

before they are passed to the appropriate semantic action for further transformation. This 

“preprocessing” of the components of the input is responsible for the main methodological 

advantage of META-LISP: its support for data abstraction and level wise programming. 

The case studies that follow this chapter will elaborate this point fully. Before this could be 

done it is necessary to develop an intuitive understanding of META-LISP as a programming 

language. 

The aim of this Chapter is then to introduce all the constructs of the language on an 

informal basis. It assumes familiarity with the concept of syntax-directed translation and 

the limited backtrack top-down parsing language (TDPL) introduced in Chapter 2. The 

Of



38 CHAPTER 3. OVERVIEW OF Meta-LIsp 

Chapter is organised as follows. META-LISP is first introduced by two small examples, 

in Section 1. These examples illustrate most features of the language. In particular the 

second example conveys some of the flavour of language oriented programming in META- 

Lisp. Section 2 introduces the translation formalism of META-LISP. Section 3 deals with 

the Semantic Language. The Chapter closes with a discussion of some of the design issues 

of META-LISP. 

3.1 Introductory Examples 

The first example introduced in this Section is a reformulation, in META-LISP of the sim- 

ple translator presented in Example 2.3.2 on page 33 in the previous Chapter. It serves 

to illustrate the basic features and workings of the core of META-LISP as a syntaz-directed 

translation schema. The second example defines a function to calculate the symbolic deriva- 

tive of arithmetic expressions involving addition and multiplication. It illustrates some of 

the more advanced linguistic features of META-LisP. More importantly, it illustrates the 

support that MreTa-LIsP provides for the methodology of representation independent or 

level-wise programming. 

3.1.1 Simple Translation 

Example 2.3.2 in Chapter 2 presented the definition of a translation from infix to fully 

parenthesised prefix notation of arithmetic expressions involving the operations of addition 

and multiplication. The specification of this translation in META-LISP is presented in Figure 

3.1 alongside the original definition. 

The notational differences can be easily identified: 

e ‘—’ is replaced by ‘:’ 

e the nonterminal on the left of the arrow is written only once, thus allowing the rules 

for a given non-terminal to be treated as a single unit. 

e the semantic actions which correspond to the translation elements are marked by ‘=’ 

without repeating the name of the nonterminal 

e if semantic actions are not given, as in rules 2, 4 and 6, the default semantic action is 

to return the translation of the last successfully expanded component 

e the presence of a pair of parentheses, (), in the input are indicated by matching square 

brackets L ]
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Figure 3.1: SDT Schema in MeTa-LIsp 
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e the introduction of a pair of matching parentheses in the translation element is re- 

placed by a pair of square brackets, indicating the formation of a list of given compo- 

nents 

e There are three further rules in the META-LisP formulation of this example. These 

correspond to the convention of distinguishing between non-terminal and terminal 

symbols in the original translation scheme. The symbols +, * and a in rules 2, 3 and 

6 are not terminal symbols. They are defined by elementary definition, which state 

that they should match terminal symbols. 

The translation schema on the left defines a translation independent of any parsing algo- 

rithm, and indeed it allows for a complete separation of parsing and the computation of the 

appropriate translation forms. In contrast, the translation formalism of META-LIsP is tied
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toa particular parsing algorithm and the translations are computed at the time the input is 

being parsed. This is achieved by treating the nonterminals of the underlying grammar as 

translation procedures. As a translation procedure is called with some input, it tries to ex- 

pand each of its rules in turn, until one rule succeeds in finding a translation of some prefix 

of the input. The expansion of a rule involves calls to translation procedures corresponding 

to the nonterminals of the rule with input that was left behind by the preceding successful 

expansions. Once each component of a rule is expanded successfully, the semantic actions 

is evaluated to compute the appropriate translation of the successfully parsed prefix of the 

input. This, otherwise simple, picture is complicated somewhat by the use of left-factoring 

(see Section 2.2.1). As an illustration of the translation process of META-LIsP consider the 

trace of the translation of the input (a + a * a) shown in Figure 3.3 In the trace ‘>’ indi- 

cates the call of a translation procedure with input following the ‘:’; ‘<’ marks the return 

of a call, where the ‘:’ is followed by the matched prefix, and the ‘=’ sign is followed by the 

translation produced. 

The translation is constructed as the left-most derivation of the input is found. Figure 

3.2 shows the parse tree for the input (a + a * a) annotated with the translations pro- 

duced. This example have illustrated the use of MreTa-LIsP as a translator writing tool. 

The next section will illustrate its real power as a general purpose programming language. 

Figure 3.2: Decorated Parse Tree 
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INTRODUCTORY EXAMPLES 

(a t+ a * a) 

(a + a * a) 

(a t+ a * a) 

(a +a * a) 

(+ a * a) 
= + 

(a * a) 

(a * a) 

(a * a) 
(a * a) 

(* a) 

* il 

(a) 

(a) 
(a) 
a=a 

Q 
= fail! 
* a= (* a a) 

ataxa= (+ a (* a a)) 

Al 

Ff is called with input (a + a * a) 

E calls T, the first component of its first rule 
T calls F’, the first component of its first rule 

The first rule of F' requires the first element of the input 

to be a list. This is not the case, hence F' calls on the 
single component of its second rule a 

a matches the first element of the input and returns a 

F returns successfully with a 
T calls «, the second component of its first rule 

the call to * fails as * does not match + 

the first rule of 7 fails, but as the single component of 
the second rule, F’, to be considered next, is the same as 

the first component of the first rule for 7’, 7’ returns 
a, the outcome of the call to F 

FE now calls the second component of its first rule + 

+ matches the first element of the input + and returns it 

FE calls itself recursively, as the third component of its first 
rule with the remaining input a * a 

as before FE calls T 

and T calls F 
and F' expands its second rule by calling a 

a matches the first element of the input and returns it 

F returns successfully 
T calls «, the second component of its first rule 

* succeeds this time 

T calls itself recursively, as the third component of its first 
rule with the remaining input (a) 

as before, T calls F 
and F calls a 

a matches the first element of the input and returns it 
F returns successfully 

T calls «, the second component of its first rule 
* fails 

as before, T’ returns the outcome of F 

following the successful expansion of the first rule of T 
the associated semantic actions [* F T] is evaluated 

to return a list of the translations of +, F and T 
FE now calls + the second component of its first rule 

+ now fails 
with left-factoring the recursive call to # returns with T 

the expansion of the first rule of & now succeeds, having 
matched the input (a + a * a), the semantic action 

[+ T E] is then evaluated to return a list of the 
translations of +, 7 and E. 

Figure 3.3: The Trace of a Simple Translation
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3.1.2 Symbolic Differentiation 

The problem of calculating the symbolic derivative of algebraic polynomials is one of the 

oldest and most widely used example of symbolic manipulation in the literature. ! John 

McCarthy, the inventor of LISP, used this problem for one of his examples in [McC60]. 

In the LISP 1.5 Primer by Clark Weissman, [Wei67], a complete program is presented for 

the differentiation of algebraic polynomial, including input and output. John Allen in the 

Anatomy of LISP, [All78], used this problem as the vehicle of teaching the importance of 

adopting a representation independent style of programming. In the Structure and Interpre- 

tation of Computer Programs, [ASS85], the example of symbolic differentiation is used to 

illustrate the idea of data abstraction. Programs for symbolic differentiation can be found 

in the literature on Prolog and ML. The motivation for using this problem, both as an 

introductory example and as one of the main case studies in this dissertation, is twofold. 

The first is to allow direct comparison with solutions offered in other languages (LISP, Pro- 

log and ML). Secondly, since it is a problem that exhibits many of the common features 

characteristic of symbolic computation, its discussion can bring to sharper focus many im- 

portant methodological issues. This section is devoted to the discussion of methodological 

issues while constructing a program in META-LiIsP for calculating the symbolic derivative 

of arithmetic expression involving the operations of addition and multiplication. 

In this section only the following rules of differentiation will be considered: 

ge=? (3.1) 

d 1, if use 
=u = 3.2 
dx { 0; else 82) 

d d d 
at v) = mt (3.3) 

d d d 
at) = vu + rm (3.4) 

(3.5) 

The first rule says that the derivative of a constant is zero; the second rule applies for 

variables, the third gives the rule for sums and the fourth for products. Given that the 

program for this problem will be called deriv, the following METa-LisP grammar rules can 

be used to define the set of valid input: 

‘the problem of proving theorems in propositional calculus enjoys a similar status
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deriv 

: Const x 

: Var xX 

: Sum xX 

: Prod x 

In the above grammar the categories Const, Var, Sum and Prod are intended to define the 

class of constants, variables, sums and products, respectively. For the first two rules, it is 

straightforward to formulate semantic actions appropriate for the task. The derivative of a 

constant is just zero. The first rule is then simply: 

: Const x = 0 

Note, that the role of Const here is simply to recognise the appropriate component of the 

input, so that the right semantic action for dealing with it can be selected. Note also, that 

the value of the semantic action associated with the this rule does not depend on the actual 

value of the constant in the input. 

In the case of differentiating a variable, however, it is not sufficient to recognise the 

presence of a variable as the first component of the input, but it is also necessary to compare 

it with the differentiation variable to determine the value of deriv. This requires the actual 

components of the input to be passed to the semantic action. Thus Var and z in this case 

serve not only the purpose of recognition, but also the purpose of selection of the appropriate 

elements of the input. The derivative of a variable is 1, if it is the differentiation variable, 

otherwise it is zero. Assuming that Var refers to a variable recognised in the input, and x 

refers to the variable of differentiation, the appropriate semantic action for the second rule 

could be written using LISP-like syntax as (if (same Var x) 1 0), giving the rule: 

: Var x = (if (same Var x) 1 0) 

Every function in a semantic action is required to be be defined in terms of further META- 

Lisp definitions. if is a primitive of META-LIsP, with the usual meaning. same can 

be defined in terms of the built in LISP function eq. The pseudo rule of the form: 

: with lisp (function), is used to designate a LISP function to be used as a seman- 

tic function. The definition of same can be given as: 

same 

: with lisp eq 

Unlike variables and constants, both sums and products have internal structure, viz. two 

operands uand v. Hence, Sum and Prod will be required not only to analyse the input, but to 

extract these operands from it. In META-LIsP this can be achieved by the use of synthesised 

attributes. (see page 57) Thus, for example, Sum will have two synthesised attributes,
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denoted as u@Sum and v@Sum, representing the addend and the augend of the sum. In terms 

of these attributes the appropriate semantic action to express the rule of differentiation for 

addition can be formulated as: (make-Sum (deriv u@Sum x) (deriv v@Sum x)), where 

make-Sum is an abstract constructor of elements of the domain Sum, and deriv is a recursive 

call to the program that is being defined. Again it looks like a LISP function call, but in 

fact it is an example of a syntaz-directed invocation. E.g., the first recursive call to deriv will 

take a single argument, a list comprising the extracted components named uw@Sum and «. 

Then it will be the responsibility of deriv (again) to determine whether the first component 

is a constant, a variable, or again a sum or a product, etc. Note, that without considering 

the possibility of elaborating the semantic functions themselves in a language oriented way, 

deriv could not even be defined! Clearly, there is not much point in defining the input with 

a grammar, just to find that it is then required to define deriv in C, LISP or Prolog as in a 

conventional translator-writing systems. 

The handling of products is analogous to the way sums are treated. This gives, as the 

first level elaboration of the symbolic differentiation program, the following META-LISP 

definition: 

deriv 

: Const x = 0 

: Var x = (if (same Var x) 1 0) 

: Sum x = (make-Sum (deriv u@Sum x) (deriv v@Sum x)) 

: Prod x = (make-Sum 

(make-Prod (deriv u@Prod x) v@Prod) 

(make-Prod u@Prod (deriv v@Prod x))) 

Points to note about this definition: 

e it is abstract in the sense that it makes no commitment for the actual representation 

(in terms of list structures) of the domains of interest. 

e all the complexity of relating the abstract properties of the input (that a Sum has 

two components) to concrete representation (whether it be prefix, infix or postfix or 

anything else) are hidden in the appropriate definitions for all the subfunctions being 

introduced as components in the grammar rules. 

e all the complexity of constructing appropriate representation for elements of abstract 

domains are hidden in the form of domain constructors in the semantic actions, such 

as make-sum and make-prod which construct elements of the domain of sums and 

products, respectively. 

e the algorithm (in this case for calculating the derivative) can thus be formulated by 

“passing off” the job of recognition, selection and construction of appropriate elements
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of the domain of interest to sub-functions. No change in the concrete representation 

of the data will require any change in the above formulation of the algorithm. This is 

the essence of level-wise programming. [All78, 55] 

The general technique of isolating parts of a program that deal with how data ob- 

jects are represented from those parts that deal with how they are used is called data 

abstraction.[ASS85, 72] It is a powerful design methodology much appreciated and prac- 

ticed within the LISP tradition. It is instructive to compare the above definition of deriv 

with its definition in Scheme ? taken from [ASS85, 106]: 

(define (deriv exp var) 
(cond ((constant? exp) 0) 

((variable? exp) 
(if (same-variable? exp var) 1 0)) 

((sum? exp) 
(make-sum (deriv (addend exp) var) 

(deriv (augend exp) var))) 
((product? exp) 
(ake-sum 

(make-product (multiplier exp) 
(deriv (multiplicand exp) var)) 

(make-product (deriv (multiplier exp) var) 
(ult iplicand exp)))))) 

Writing representation-independent programs in LISP is clearly a matter of style and 

discipline. Note also, that in LISP the recognition of instances of abstract data and their 

selection is the job of separate functions. (e.g., sum? will recognise instances of a sum, 

but its components have to be selected by two further functions augend and addend). Not 

only does this enforce a somewhat artificial division, but it can be a source of inefficiency. 

The separation of recognition and selection can lead to inefficiency as it necessitates the 

examination of the same data twice: once for the purpose of recognising a given instance; 

and again to select a desired component of it. META-LISP, in contrast, makes it possible to 

combine both tasks in one functional unit, called an abstract analyser. The explicit support 

that Mera-Lisp gives for describing the abstract properties of the input means that it 

supports data abstraction and level-wise programming explicitly. 

To carry on with the example, all the subfunctions introduced in the first-level definition 

need to be defined. 

Constants are numbers. LISP provides a built in function to recognise numbers. The 

condition that the first element of the input should be a number, as recognised by the built- 

in function numberp, can be expressed in META-LISP using the pseudo rule of the form: 

: is (predicate). With this the definition for Const becomes: 

?Scheme is a modern dialect of LISP. [GLSS75] It was invented by Guy Lewis Steele Jr. and Gerald Jay 

Sussman of the MIT Artificial Intelligence Laboratory.
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Const 

: is numberp 

Variables are single lowercase character symbols. The easiest way to define this class is 

to enumerate them, using the pseudo rule : any (object), ...(object),, 

Var 
>: anyabcdefghijklmnopgqrstuvwxyaz 

zis a variable, so it can be defined in terms of Var: 

: Var 

Assuming a fully parenthesised infix notation as a concrete representation of sums, their 

structure can be described by writing: 

sum 
: [Laugend + addend] 

Sum is required to make available the two components addend and augend as synthesised 

attributes, called u and v. Assignment of synthesised attributes take the following form in 

META-LIsP: (@ (attribute name) <- (term)). Using this form, and noting that a sequence 

of semantic terms can be given in a semantic action, the definition for Sum becomes: 

sum 
: [Laugend + addend] = (@ u <- augend) (@ v <- addend) 

Similarly for Product 

Prod 
: Lmultiplicand * multiplier] = (@ u <- multiplicand) (@ v <- multiplier) 

make-Sum may use some rudimentary simplifications — such as carrying out addition if 

both addend and augend are numbers; returning one of them if the other is zero — before 

constructing an appropriate internal representation for sums, if all else fails. 

make-Sum 

: a=number b=number = (add a=number b=number) 

: zero b =b 

: a Zero =a 

ta b = [a + b] 

where add is defined as 

add 
: with lisp +
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and a and 0 are defined so as to accept the first element of the current input using the rule 

: _ . The rational for such a permissive description of the input to make-Sum is that it 

presumably will have received input that has been produced by other components of the 

whole program. In some other circumstances it might be necessary to be more restrictive. 

What has been shown so far of design of the program should be sufficient to illustrate 

the following important points about META-LISP: 

e it is integrated with LISP, both in the sense of relying on LISP to supply recognisers 

for primitive domains, such as numbers, as well as for primitive semantic functions, 

such as eq. 

e it supports data abstraction and level-wise programming by making possible the com- 

bination of the functions of recognition, and selection in a single functional unit. This 

is due to the increase in expressive power that syntax-directed invocation brings. 

e enables the design of every non-primitive functional component of a program to be 

designed in a language oriented style 

Above all, this example has emphasised the role of data abstraction. The rule based form 

of program formulation of META-LIsP together with the ability to designate arbitrary com- 

plex transformations to pass parameters for further transformations, has important further 

methodological implications which goes beyond the support it gives to data abstraction. 

This point will be taken up in the case studies. The following two sections will introduce 

all the features of the language.
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3.2. Translation Formalism 

This section describes the translation formalism of META-Lisp. The presentation will follow 

a top-down sequence. First, the concept of a META-LISP translation procedure is introduced, 

and the grammatical means of defining them in terms of other translation procedure and in 

terms of elementary definitions which do not make reference to other translation procedures. 

3.2.1 Non-Elementary Rules 

3.2.1.1 Alternates 

> (Pia (Phig 1: (Pig = (semantic action), 

> (Poy (Pian ++ (Pia; = (semantic action), 

> (P)na (Plana ‘1' (Pink = (semantic action), 

The meta-symbol ‘:’ designates the beginning of a grammar rule. The symbol ‘=’ sepa- 

tates the rule from the semantic action. A grammar rule is composed of constituents which 

are nonterminals of the grammar. 

The procedural interpretation of the above definition is as follows: (p) first attempts 

to expand its first alternate, i.e. consecutively calls the constituent procedures of the first 

alternate. If the translation of the first constituent succeeds, meaning that some prefix of 

the input has been accepted and some value has been produced by procedure (Phat then 

(p) calls the procedure (p),, with the remaining input. If the consecutive calls to all the 

constituent procedures appearing in the first alternate are successful, then procedure (p) 

evaluates the associated semantic action, and returns its value. If there is no semantic 

action attached to the rule,(i.e., there is no ‘=’ followed by a semantic action), then (p) 

returns the value produced by the last constituent procedure of the rule. 

If any of the consecutive calls to the procedures (p), 1{P)19°'*{P)1,; fails, then the 

expansion of the first alternate fails. If that happens, procedure (p) backtracks by restoring 

the input to what it was when (p) was called, and then attempts to expand its second 

alternate, and so forth. If the expansion of all the alternates fails then (p) returns failure. 

The distinctive feature of the translation algorithm outlined above is that the alternates 

for each nonterminal are tried exhaustively until one translates a prefix of the input. Once 

such an alternate is found, the procedure returns successfully. However, the algorithm will 

not backtrack to try the further alternates of the procedure once it has returned successfully,
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as in full backtracking algorithms. This aspect of the algorithm dictates that the alternates 

are to be ordered so that the one that can translate the longest prefix is presented first. 

In formulating a definition for a procedure (p) it does not concern us how the constituent 

procedures are defined. At this stage we simply assume that over the range of valid input 

that they themselves define, they will produce appropriate results. 

Multiple occurrences of the same constituent in a rule are allowed. If the semantic action 

refers to such a component, its value is taken to be the value of the last occurrence. 

The procedural interpretation of alternatives given here does not cover the use of left 

recursive alternates; i.e., when (p);, = (p) for some 1 <i <n. For the treatment of left 

recursive alternates see Section 3.2.1.3. 

3.2.1.2 Nested Structures 

A nested structure is a sequence of components enclosed by a pair of matching square 

brackets. In a grammar rule a nested structure can occur in the place of a single constituent 

procedure, in which case it matches a nested list from the input. The term component is 

for both constituent procedures and nested structures. 

The expansion of a nested structure is carried out as follows: a test is made to see 

whether the next element of the input is indeed a (non-empty) list. If it is, then the 

components enclosed by the square brackets are consecutively expanded with this list as 

input. If this expansion is successful, and the entire list has been exhausted in the process, 

then the list, that has thus been matched, is removed from the input. The expansion of 

a nested structure fails, if either the first element of the input is not a (non-empty) list, 

or the expansion of the components in the nested structure fails, or the nested list is not 

exhausted after the successful expansion of all the enclosed components. 

The combination of nested structures and alternates gives the expressive power needed 

to write list processing applications. 

Example 3.2.1 Consider the procedure that tests list membership: 

member 

% Test if an item is a member of a given list 

: item [] C 
: item [head tail] (if (equal item head) t (member item tail)) 

The reference to member in the semantic action is a recursive invocation of the translation 

procedure being defined, with an input list constructed out of the values of the constituent 

procedures item and tail which are assumed to select the appropriate parameters from 

the input.
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Note: The line beginning with the character ‘4’ marks out a line of comment. Note also 

that the pair of square brackets in the grammar rule stands for the empty list in the input. 

In the associated semantic action, on the other hand, the pair of square brackets designate 

the empty list as a return value. 

3.2.1.3 Left Recursion 

{p) 
>) Phe see Ops = (semantic action), 

2 (Pma (Pm, tet (PD = (semantic action), 

: (py (P)mat2 °'' (P)mtig = (semantic action),,.1 

: (p) (P)n2 ot Die = (semantic action), 

An alternate in a definition of a procedure (p) is called left recursive if the left-most 

constituent procedure appearing in the grammar rule of the alternate is the same as the 

procedure that is being defined. A procedure (p) is called left recursive if it has at least one 

non left recursive alternate followed by one or more left recursive alternates. 3 

The interpretation of a left recursive procedure is as follows: first the non-left recursive 

alternates are tried in order. If none of them succeeds then the expansion of (p) returns 

failure. If one of them succeeds and produces value v; while reducing the input to 21, then 

regard the left recursive call to (p) in the left recursive alternate(s) as already successfully 

expanded with v, as its value and z, as the input that it left unmatched. With this 

assumption, the expansion of the left recursive alternates does not call (p). If the expansion 

of one of the left recursive alternates, tried in order, is successful, produces value v2 and 

reduces the input to z2, then the expansion of the left recursive alternates is repeated, 

with the assumption that the call to (p) had been successful with value v2 and z2 as the 

unmatched portion of the input. This process is iterated until it leads to failure, in which 

case (p) returns the last successfully produced value, and restores the input to what it was 

before the last unsuccessful expansion. 

Example 3.2.2 The translation of binary numerals into decimal representation of whole 

numbers is best described using left recursion: 

“Presenting the left recursive alternatives before the non left recursive ones is also allowed without 

changing the meaning of the construct as defined below. The important point is not to mix them.
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binary 

: bit 
: binary bit = (+ (* 2 binary) bit) 

The following is a trace of its execution, where > indicates the call of a translation procedure 

with input following the colon; < marks the return of a call, where the colon is followed by 

the matched prefix, and the equal sign is followed by the return value: 

1> binary : ( 

2> bit : ( 
<2 bit: 1= 

<1 binary : 1 

1> binary : ( 

2> bit : ( 
<2 bit: 1= 

<1 binary : 1 

1> binary : ( 
2> bit : 
<2 bit : 

<1 binary : 

1> binary 
2> bit : 
<2 bit : 

<1 binary : 

1> binary : 
2> bit : (+ 
<2 bit : = 

<1 binary : 1 

O
m
e
 

a
e
 

ed
 

ae
 

m
e
 
e
a
e
 

iil 

binary successfully translates the prefix 1 1 0 1 of the input and leaves behind unmatched 

the input (+ 1 1 0). 

3.2.2 Elementary Components 

Elementary components specify immediate tests on the input and specific return values 

without reference to other translation procedures. If the test succeeds than they remove 

the successfully matched one or more elements from the input. These are then returned as 

the value of the elementary component. If the test fails then they report failure leaving the 

input unchanged. 

3.2.2.1 Denotation 

(object) 

(string) 

(keyword)
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There are three different ways to specify a test whether the first element of the input is 

a given object. Firstly, the object to be matched can be designated by the use of a single 

quote before the object as a component in a grammar rule. Secondly, a LISP strings (e.g. 

"this is \" a string") can be given as a component in a grammar rule to designate a 

test for the presence of the given string as the first element of the input. Thirdly, a keyword 

(e.g. :test) can be given as a component in a rule to designate a test for the presence of 

that keyword as the first element of the input. 

3.2.2.2. End of Input Test 

The expansion of an elementary component of this form succeeds if the input is empty, and 

leaves the empty input unchanged. Otherwise it fails. 

3.2.2.3 Prefix 

or 

_(identifier) 

An elementary component of this form always succeeds and matches the first element of 

the input. The second form is really equivalent to having a definition of the form: 

An elementary component of this form succeeds even if the input is empty. In that case, 

the value returned is the empty list. If the first element of the input represents failure, then 

that value will be returned and will cause the calling procedure to fail. 

3.2.2.4 Sufix 

An elementary component of this form always succeeds, matches the entire input and returns 

it as its value.
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3.2.2.5 Empty 

<> 

An elementary component of this form always succeeds, without matching any of the 

input, i.e. leaves the input unchanged. The value it returns is the empty list. 

3.2.3 Pseudo Rules 

Pseudo rules are so called because they look like ordinary grammar rules, but in fact have 

special interpretations. Pseudo rules have as their first component the symbol is, any or 

with. If semantic actions are associated with a pseudo rule then if the match was successful, 

then the successfully matched and removed object from the input can be referenced as the 

value of the META-LIspP keyword appearing in the rule. 

3.2.3.1 Enumeration 

(p) : any (object), ... (object), = (semantic action) 

Test: that the first element of the input equals any one of the (object), given in the rule. 

Remove: the matched object. 

Example: 

day : any Mon Tue Wed Thu Fri Sat Sun = (print any) 

3.2.3.2 Predication 

(p) : is (predicate) = (semantic action) 

Test: that the first element of the input satisfies the LISP (predicate) named in the rule. 

Remove: first element of the input. 

Example: An integer is negative, if it is an integer, tested by the Lisp predicate integerp, 

and if it is greater than 0. If the given integer is not greater than zero return failure. 

negative_int : is integerp = (if (> 0 is) is fail!)
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3.3 Semantic Actions 

Semantic actions are functions of the values (and possibly attributes) of translation proce- 

dures appearing in a grammar rule. Semantic actions comprise a non-empty sequence of 

semantic terms. There are four basic mechanisms used to build up semantic actions: con- 

struction of list structures, invocation of functions, assignment of attributes and sequencing 

of semantic terms. 

The function invocations have the same outward form as in Lisp, and if the function 

is a built-in Lisp function, then this Lisp function is called. Otherwise, it signifies the 

invocation of a META-LIsP translation procedure with a single input list. The presence 

of translation procedures as functions in the semantic actions presents a terminological 

dilemma. Although they are defined as procedures that are expected to consume some 

portion of their input in the course of producing a translation, in the context of semantic 

actions this procedural aspect of their behaviour is completely ignored. Their single role is to 

produce values. So it is more appropriate to adopt the terminology of referring to translation 

procedure appearing in semantic actions as semantic functions. The term effective concept 

is introduced as a term to refer to META-LISP translation procedures regardless of the 

context in which they appear. Effective concepts are also allowed as parameters. Since 

semantic actions are invoked only once the expansion of the grammar rule with which they 

are associated has succeeded, all the immediate constituent procedures of the rule have 

returned some values. If these immediate constituents occur in the semantic action as 

parameters, then their values are referenced. 

3.3.1 Packages 

The unit of modularity in Meta-Lisp is called a package. The development of a program 

always takes place in the context of a package. Packages are introduced by issuing the 

following META-LIsP directive at the top-level of META-LISP: 

| ?= package (name) 

The semantic functions or effective concepts that are invoked in a semantic action are 

assumed to belong to the same package as the program in which they are called. effective 

concepts are imported from other packages using a pseudo rule, called a with clause. 

(p) : with (package) (name) 

where, (p) is the name of the effective concept that is invoked in a semantic action and 

(package) designates the name of the module from which an effective concept with the 

given (name) is to be imported.
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3.3.2 List Construction 

The facilities for constructing list structures are analogous to the backquote macro in Com- 

mon Lisp. 

List construction takes the form of a non-empty sequence of list elements enclosed in a 

pair of square brackets. A list element can be either a term or a term preceded by a splicing 

operator, represented by a full stop. 

This feature allows the construction of arbitrary complex list structures. The splicing 

operator is used to embed all elements of the list that it precedes. 

Example 3.3.1 Suppose that A = (aaa), and B = (bbb), then: 

[A.B] = (faaa) bb b) 

L.A.B] = (aaabbb) 

LA. BC] = (Claaa) bbb C) 

[L.A] = (aaa) 

3.3.3 Invocation 

((function term) (t),...(t),) 

Invocations are evaluated by the following steps: 

1. evaluate the (function term), which should evaluate to the name of an effective concept, call 

it ec, in the current package. 

2. evaluate the terms (t), ...(t),, from left to right 

3. construct an input list, x, formed of the values of these term (e.g. x = [(t), ...(t),] 

A. find the definition for ec, (which may involve importing it from another package), and expand 

this definition with input «. 

The following exceptions are raised: 

1. If the evaluation of the (function term) fails, then the value of the invocation is failure. 

2. If the evaluation of the term (function term) succeeds, but it does not evaluate to the name 

of an effective concept defined in the current package then 

e if it is an identifier then the exception undefined effective concept is raised 

e if it is not an identifier the exception Inappropriate function term is raised 

Note: The application of list construction to the terms given in an invocation is implicit. 

This convention is adopted mainly to reduce the clutter that the introduction of pairs of 

square brackets into an invocation would present.
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3.3.3.1 Dotted Invocation 

In the special case when only one term is given, if it has a list value, then it is desirable 

to override the implicit construction of a list. To indicate this the dot notation is used, 

(exploiting the equivalence: [ . (t) ] = (¢)). Thus, 

means that procedure (p) is invoked with the value of (¢) as input. 

3.3.3.2 LISP Functions 

The elaboration of an effective concept in a given package normally involves further effective 

concepts, both as immediate constituents in terms of which the input to them is described, 

as well as those that appear in the semantic actions. Since these effective concepts, in turn, 

are expected to be elaborated in the same way, at some point procedures will have to be 

introduced in the semantic actions that require no definitions from the user. Meta-Lisp 

depends on Lisp for these primitive procedures. The incorporation of primitive functions 

from Lisp is achieved by using a variant of the with clause, in which lisp is designated as 

the package name: 

(p) : with lisp (name) 

When the semantic function (p) is invoked in a semantic action, the named lisp function 

is applied , in the sense of Lisp, to the list that is constructed in the invocation. 

Example 3.3.2 

plus : with lisp + 

3.3.3.3 Calling MetTa-Lisp from LISP 

The user interacts with the MeTa-LisP system by ‘talking’ to the MeTa-LisP top level (see 

page 54) by issuing directives (see page 54) and running MeTa-LisP programs. Effective 

concepts can be invoked from within LISP with a call to the function 7= 

(?= (ec) (module) (input)) 

The arguments to this function should evaluate to the name of an effective concept to be 

invoked, the name of the module to which it belongs and a list that is passed to the named 

concept as its input. The module argument is optional.
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3.3.4 Attributes 

3.3.4.1 Synthesised Attributes 

It is sometimes desirable to compute more then one value. Such a facility is provided in the 

form of synthesised attributes. One can think of the value returned by an effective concept 

as a distinguished synthesised attribute, which is referenced by the name of the concept. 

Contrast this with attribute grammars, which force the user to declare an attribute even 

when only a single value needs to be computed. 

Synthesised attributes for a given effective concept are assigned by the following form 

of a semantic term appearing in its definition: 

(@ (attribute name) <- (t)) 

This will create a binding for an identifier made up of the name of the effective concept 

the attribute name separator @ and the given name of the attribute, binding it to the value 

of the semantic term (t) (see page 46). 

3.3.4.2 Inherited Attributes 

The attribute mechanism also allows the specification of inherited attributes, permitting in- 

formation that arises early in the translation process to affect the course of later expansions, 

in a form well-known from the literature on attribute grammars. See [Knu68, Pag81] 

(* (attribute name) <- (t)) 

This will create a binding for the identifier made up of the symbol * and the (attribute name). 

The terminology of ‘inherited attributes’ can be criticised on the grounds that what the 

above form really defines is simply a local binding for a variable. The following equivalence 

indeed holds: 

(~ (name) <- t1) te 

is equivalent to 

(let ((*(name) ty )) tz ) 

Their role is similar to the role of “pass variables” in LISA, see [Kos84, 181]. The term 

inherited attributes is used to highlight their role in affecting subsequent parses. 

Both forms of attribute assignements can be given in a shortened form if the attribute 

name is the same as the name of an effective concept appearing in the rule. In that case 

the value of the name effective concept is assigned to the identically named attribute. Le. 

the following equivalences hold:
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(@ (name)) = (@ (name) <- (name)) 

And similarly for inherited attributes: 

(* (name)) = (* (name) <- (name)) 

3.3.5 Conceptual Values 

< (identifier) > 

Effective concepts in META-LISP are first class objects. They can be returned as values, 

and passed as parameters. The piece of special syntax to indicate that a particular identifier 

is to be interpreted as the name of an effective concept is to enclose the given identifier in 

a pair of pointed brackets. 

3.3.6 Semantic Backtracking 

In general a semantic action involves calls to other translation procedures, so that the value 

of the semantic action itself can be failure. If that happens, or equivalently, if the semantic 

action evaluates to the special constant fail!, then the procedure reports failure without 

considering further alternates. This feature is used to force backtracking at a higher level, 

or to specify linguistic constraints via negation. 

If the programmer’s intention is to consider further alternates on the return of a semantic 

action with failure, this can be achieved by marking out the semantic action with the 

symbol ‘?’ instead of the usual ‘=’ sign. The backtracking that is triggered by such an 

arrangement is called semantic backtracking. This provides the ability to impose context 

sensitive constraints on the input, such as, elements of the input are equal, etc. Semantic 

backtracking can also be used for obtaining multiple solutions, as in Prolog, see Chapter 5. 

3.4 Discussion 

In terms of the number of its features, META-LISP is a programming language of modest 

size. The syntax of META-LISP, comprising just over 40 non-trivial productions, is shown 

in Figures 7.1 and 7.2 on pages 140-141. The main charactersitics of the language can be 

summarised as follows: 

e The underlying grammatical formalism is tied to a particular parsing algorithm
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e The language of semantic actions is an applicative language for which the order of 

evaluation is fixed (left-to-right inside out). 

e Collection of rules for the same effective concept are treated as a single, named unit 

e exception handling has not been worked out fully.
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Chapter 4 

Programming in META-LIsP I 

The purpose of the case studies presented in this chapter is twofold. First, it contributes 

to the development of an intuitive understanding of the constructs and idioms of META- 

Lisp through familiar examples. Secondly, these case studies allow direct comparisons with 

alternative programming styles. Section 1 presents a number of simple examples of list 

processing in ML as well as META-LISP. Some of these examples were selected from a list 

of predefined functions in [Wik87]. Section 2 develops a complete program for Symbolic 

Differentiation in META-LisP. The design of the program follows the design of a program 

for symbolic differentiation presented in the LISP 1.5 Primer by Clark Weissman (see 

[Wei67]. The aim of this is to facilitate direct comparison between LISP and METa-LIspP, 

both in terms of their performance and the quality of program formulation that they make 

possible. The following Section presents an alternative design of the program for symbolic 

differentiation, which takes full advantage of the higher expressive power of META-LISP. 

Although this second design is a bit more complex, in terms of efficiency it outperforms 

even the original hand written LISP code. Section 4 reuses parts of the differentiation 

program for approximating the roots of polynomials using the Newton-Raphson method. 

4.1 List Processing 

The following section introduces some of the basic “idioms” of programming in META-LISP 

in the context of developing a number of list processing functions. These include variants of 

functions to calculate the length of a list, reversing, and mapping a list, as well as functions 

for splitting, merging and sorting a list. The definitions for some of these functions are 

compared with their equivalents in ML. The use of ML in this context serves two purposes. 

The first is to provide a convenient starting point for the development of the functions that 

61



62 CHAPTER 4. PROGRAMMING IN MeEta-LisP I 

will be discussed. The second is to highlight the differences as much as the similarities 

between the two languages. 

4.1.1 Length 

4.1.1.1 Naive Length 

fun len nil 

| len (_ :: xs) 

0 

1+ len xs; 

This definition of length in ML can be read as stating the following two rules for calcu- 

lating the length of a list: 

e the length of the empty list is 0 

e the length of a list comprising a head and a tail can be obtained by adding one to the 

length of the tail of the list 

A direct transcription of this definition into META-LISP is possible. This can be ex- 

pected, given that patterns can be readily described in META-LISP 

0 

(+ 1 (len ._)) 

The language oriented , as opposed to the above, “pattern oriented” , way of elaborating 

function definitions in MEeTA-LiIspP leads to a different formulation. The development of 

list processing functions in the language oriented style starts with the formulation of a 

grammatical description of what is a list. <A list is a sequence of elements enclosed in 

parentheses. Depending on whether lists are allowed as elements we can have flat or nested 

lists. One possible form that a grammatical description of lists can take is the following: 

list 
: [seq] 

seq 

: § 
: elem seq 

elem 

: atom 

: list 

atom 

: is atom 

This description can be read as saying, that 

e a list is a sequence of elements enclosed by a pair of parentheses
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e asequence forming a list can be either empty or comprising an element and a sequence 

e elements of a sequence that form a list can themselves be lists or atoms 

There are a number of possible alternative grammatical descriptions that can be used to 

define what a list is. The choice of which one to use, depends on the intended application. 

In fact, designing an appropriate grammar is a major part of the program design process. 

For the moment try to use the above grammatical description as the basis for defining the 

function length. Clearly, calculating the length of a list, boils down to calculating the length 

of a sequence. This can be expressed by writing: 

length. list 
: [length. seq] 

The notational convention of writing length.list, and length.seq, is intended to indicate 

that the function length, that is being defined, is over lists and sequences, respectively. 

Rewriting the grammar rules for sequence with the same intention of indicating what func- 

tion is being defined we obtain the following: 

length. seq 
: length.$ 

: length.elem length.seq 

In exploiting this grammatical structure, we are invited to write down 

e how to obtain the length of a sequence, on the assumption, that we know the length 

of its components, 

e and to define how the length of each component is to be obtained. 

Considering the first alternative: if the sequence is the empty sequence, and length.$ 

tells us what its length is, we have nothing further to do, but to return its value. For the 

second alternative, we can say, that if we know the length of the element, and the length of 

a sequence, that make up a sequence, than the length of a composite sequence, comprising 

both, should be the sum of the lengths of its components: 

length. seq 
: length.$ 

: length.elem length.seq = (+ length.elem length. seq) 

: with lisp + 

All that remains to say is, that the length of the empty sequence is zero, and that the 

length of an element is one, regardless of the fact whether it be a list or an atom. This last 

fact, can be reflected in changing the grammatical description of an element of a sequence, 

by leaving its internal structure unspecified:
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length. $ 

: $ =0 

length. elem 
. = 1 

This example has already illustrated one of the most characteristic features of the lan- 

guage oriented style of programming: that it invites us to 

e define the structure of the input with a suitable grammar 

e exploiting this structure, specify the value of a function over composite data in terms 

of the values of its immediate constituents, 

e and to give the value of non-composite data directly. 

The fact that in a rule every constituent can be assigned the task of arbitrary complex 

computation, on the portion of the input that it accepts, makes it possible to reflect in 

the formulation of the algorithm, for a given task, the composition of the input data that 

is being examined. This compositionality, is the key to both writing, and understanding, 

MetTa-LisP definitions. This is worth keeping in mind, even if the notation used does not 

make it so plainly and painfully obvious, as in the above example, what structure is operated 

on by what functions. A terser formulation of length can be given as follows: 

len 

: [len.seq] 

len.seq 

: $ 0 

len.seq = (+ 1 len.seq) 

The advantage of bearing in mind the full version of the definition is that it can be readily 

adopted to be used in a great variety of list-processing functions, such as for counting atoms 

in a nested list structure 

count 

: [c.seq] 

c.seq 

: $ 
: c.elem c.seq 

0 

(+ c.elem c.seq) 

c.elem 

: atom 

: count 

it e
 

or flattening it.
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flat 

: [f.seq] 

f.seq 

: $ 
: atom f.seq 
: f.seqi f.seq 

[] 
[atom . f.seq] 
[. f.seqi . f.seq] 

f.seql 

: f.seq 

4.1.1.2 A Better Length 

All three definitions of the function length, in the previous subsection, were naive in the 

sense of requiring space proportional to the length of the input in maintaining storage for 

pending recursive calls. In the list of predefined functions in [Wik87, 429], the naive version 

is only given in the form of a comment followed by a tail-recursive definition: 

local fun len’ n nil n 
| len’ n (_ :: xs) = len’ (nt1) xs 

in fun len xs = len’ O xs end; 

The same gain in efficiency can be obtained in META-LISP, in this case, by using left- 

recursion in len.seg. 

length 
: <> 

: length elem 
0 
(+ 1 length) 

elem 

: § fail! 

This time elem needs to be defined in such a way that it excludes the empty sequence. 

In the right-recursive definition there was no need for this, as the end of input test took 

place before elem was called. 

The technique of using left-recursion is applicable, when the operation that we wish to 

apply in the semantic action is associative, as in the case for addition, above. 

4.1.2 Reversing a List 

In defining the function reverse, tail-recursion and the use of an accumulator are again 

desirable: 

local fun rev’ nil h 

| rev’? (a ::r) h 

in fun rev l = rev’ 

rev’? r (a :: h)
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The left-recursive formulation of reverse in META-LISP is again simpler: 

reverse 
: L[Lreverse.seq] = reverse.seq 

reverse.seq 

: reverse.seq elem [elem . reverse.seq] 

: elem [elem] 

elem 

: $ = fail! 

It is tempting to read it “declaratively” as: 

e the reversal of a sequence, comprising a sequence and an element appended to it to 

the right, is obtained by constructing a list whose first element is the given element 

and its tail is the reversal of the component sequence 

e the reversal of a single element is a list containing that element 

The fact that sequences are represented as lists in META-LISP accounts for the use of list 

constructions in the above definition. 

4.1.38 List Membership 

member.atlist 

: sought list (* sought) 
(member.seq . list) 

member. seq 

: $ 
: elem=sought 

: elem member.seq 

CI 
t 

member .seq 

elem=sought 
: elem = (if (equal “sought elem) t fail!) 

elem : 

Recall that the inherited attribute assignment (7 sought) is equivalent to 

(let ((sought sought)) (?= (member.seq list))) 

given that sought and list have the appropriate bindings. 

4.1.4 Mapping a List 

The practical advantage of higher order functions lies in that they allow for common patterns 

of computations to be abstracted out. The most familiar example is the function map which
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applies a given functions to each element of a list in turn, and returns a list with the values 

of the applications. It can be defined in META-LIsP as follows: 

map 

: list function = (* function) 
(map.seq . list) 

mMap.seq 

: $= C[] 
_ map.seq = [(°function _) . map.seq] 

4.1.5 Splitting a List into two 

Again just consider splitting a sequence of elements. Return two values in the form of 

synthesised attributes p1@split.seq and p2@split.seq. 

split 
: [split.seq] (@ pi <- p1@split.seq) 

(@ p2 <- p2@split.seq) 

split.seq 

: = (@ pi <- [1) 
(@ p2 <- []) 

: el $ = (@ pi <- [e1]) 
(@ p2 <- []) 

: el e2 split.seq = (@ pl <- [el . pl@split.seq]) 

(@ p2 <- [e2 . p2@split.seq]) 
el: _ 

e2 : 

4.1.6 Merging two sorted lists 

A function to merge two sorted lists of integers can be defined as shown below: 

merge.parts 

: [it t11] [12 t12] (if (precedes il i2) 

[ il . (merge.parts tl1 [i2 . t12])] 
[ i2 . (merge.parts t12 [ii . t11])]) 

: O list list 

precedes 
: with lisp < 

il: 

il: _ 

tlio: ._ 

t12 : ._ 

By changing the definition of precedes appropriately the same definition can be used to 

merge other kinds of lists too. One possibility is
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precedes 

>: <> = “pred 

This will work assuming that “pred is bound to the name of an appropriate effective concept 

to be used as a predicate to determine the ordering of two elements. 

4.1.7 Sorting 

The related problems of sorting and searching are fundamental in computer programming. 

Volume 2 of Donald Knuth “Art of Computer Programming” is devoted entirely to these 

problems. The function for sorting presented in this section is one of very many possible 

sorting algorithms. It is appropriate to form the basis of a “built-in” sorting function 

because its requires, on average, nlog(n) comparisons, which is very good when there is no 

a priori knowledge about the distribution of items in the list to be sorted. The divide and 

conquer strategy would split the list and sort the parts and then merge the result. If we 

make the splitting easy, then we carry the burden of sorting in the merging. Alternatively 

we can do the brunt of the work in the splitting of the list, in which case merging is trivial. 

The first choice leads to merge sort the second is called quick sort, (or rather split sort?) 

Using the functions for splitting and merging, introduced in the previous section merge 

sort can be defined in META-LISP as follows: 

ms 
: pred list = (* pred) (sort.list list) 

sort.list 

: sort.short_list 

: sort.longer_list 

sort.short_list 

: C] 
: [it] [ii] 

sort. longer_list 

: [split.seq] = (merge.parts 
(sort.list part1@split.seq) 

(sort.list part2@split.seq))
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4.2 Symbolic Differentiation: as in LISP 

The subject of both this and the following section will be the design of a program for 

Symbolic Differentiation. Both sections will describe, in detail, a program for Symbolic 

differentiation written in META-LIsP. The design of the program, presented in this section, 

mirrors that of a symbolic differentiation program presented in the final chapter of the 

Lisp 1.5 Primer, see [Wei67]. The purpose of this is to allow direct comparison with LISP, 

both in terms of performance and quality of program formulation. The next section will 

present an alternative way of writing a program for symbolic differentiation in META-LISP. 

For the design of this second program advantage will be taken of the higher expressive 

powers of META-LISP, not only in the way the program is formulated, but in its overall 

design. The present section will demonstrate that, for the task of writing a program for 

symbolic differentiation, the advantages of higher-level program formulation, offered by 

MEtTA-LISP, can be enjoyed without any sacrifice in efficiency. This is in sharp contrast to 

usual expectations, where gain in expressive power is usually paid for by loss in efficiency. 

The main result of the following section is, if anything, even more striking. It shows that, 

in this particular instance, the exploitation of the higher expressive powers of META-LISP 

can even lead to gains in efficiency when compared to the hand coded LISP program (some 

40% reduction in runtime). 

4.2.1 Program Strategy 

The program reads a polynomial constructed from the arithmetic operators and exponen- 

tiation in the usual infix notation, and then prints its derivative. The program repeatedly 

calculates the derivative of polynomials until told to stop (see figure 4.1). 

THE DERIVATIVE OF- 
3(X73 + X) + 2X73, 

WITH RESPECT TO- 

x, 

Is- 

3 (3 x72 +1)+6x°2 
THE DERIVATIVE OF- 

B+B)*(A-B) , 

(POORLY FORMED EXPRESSION) 

FINIS 

Figure 4.1: Symbolic Differentiation
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The strategy proposed by Weissman for developing this program is to translate the 

given expression into a fully parenthesised prefix representation, differentiate and simplify 

that form, and translate the resulting form back into infix form, in accordance with the 

usual conventions for operator precedence. The only point where the META-LISP program, 

presented in this subsection, deviates from this overall design is that instead of prefix 

notation, it translates to and from fully parenthesised infix notation. As will be pointed 

out, the use of data abstraction enables the formulation of this program in META-LISP in 

a way that makes it easy to switch from one internal representation to the other. 

4.2.2 Top Level Elaboration 

META-LISP programs are made to belong on entry to some module. The first step in the 

development of a program is to declare the module to which the program will belong: 

| ?= package diff 

In formulating a suitable top-level definition, in META-LIsP for the program our main 

concern is the identification of the immediate constituent effective concepts in terms of 

which the relevant input can be captured, and the form in which these parameters are to 

be transformed to obtain the output. 

We can break down the problem by assuming that we have two input procedures: one to 

read and validate an algebraic expression, named inezpr; and another, to read and validate 

a variable, named invar. These procedures are combined in a grammar rule prescribing the 

intended sequence of their call: 

diff 

: inexpr invar 

The output can be specified using functional composition, which takes the result of the 

input procedures as parameters, giving as the top level definition: 

diff 

: inexpr invar = (show (simplify (deriv inexpr invar))) 

To express the idea that this process is to be repeated, the left-recursive form of iteration 

can be used: 

diff 

: <> 

: diff inexpr invar = (show (simplify (deriv inexpr invar))) 

This will work, if we can assume, that when the user requests termination of the session 

with the program, either inexpr or invar will return failure.
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As the effective concepts introduced in the above definition are each elaborated, a com- 

mon pattern emerges: the identification of further immediate procedures and their com- 

bination to achieve the desired result is repeated. The attention is always focused on the 

immediate constituent level. In this regard, META-LISP strongly supports top-down or to 

use John Allen’s phrase, level-wise programming. 

To obtain a complete program the immediate constituent concepts introduced above 

need to be elaborated. This will lead to the introduction of further concepts until eventually 

we reach bedrock: elementary procedures and/or LISP primitives. 

4.2.3. Reading and Validating the Input 

The overall structure of both input routines is similar. Both involve three main steps: 

e Prompting the User 

e Reading a line of input 

e Validating the input 

As can be seen in Figures 4.2 and 4.3, validating the input is responsible for returning 

failure when the user requests termination of the session by typing a full stop. 

inexpr 
: prompt1 readl (validexpr read1) 

prompt 1 

: <> = (format t "~4THE DERIVATIVE OF-~%") 

validexpr 
: finish = fail! 

: Lexpr] = expr 
: error! readl = (validexpr read1) 

finish 

: :end = (format t "“&FINIS™%") t 

error! 
: <> = (format t "~4(POORLY FORMED ~,EXPRESSION) ~%") 

Figure 4.2: Reading and Validating an Expression 

The second alternative of validexpr calls expr which is responsible for translating the 

input line into internal representation. This will succeed if the entire line of input read forms 

a valid algebraic expression. If this translation fails, or if not the entire line is deemed to 

be an algebraic expression, then the third alternate is taken, which issues an appropriate 

error message, then reads a new line of input, and repeats the validation process.
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Reading and validating a variable is analogous, as shown in Figure 4.3 

invar 
: prompt2 readl (validvar read1) 

prompt2 

: <> = (format t "WITH RESPECT TO-~%") 

validvar 

: finish = fail! 

: [var] = var 

: error? readl (validvar read1) 

error2 

: <> (format t "~&%REENTER VARIABLE") 

Figure 4.3: Reading and Validating a Variable 

Reading and validating both an expression and a variable uses read! to read a line of 

input. Its definition is discussed in the next subsection. 

4.2.4 Reading a Line of Input 

The line reading routine, readl, is invoked with no input. The action of the reader is governed 

by the last character read. Accordingly, readl first calls read-char to read a character from 

the current input stream and then calls readlh with the first character read to constructs a 

list of input characters using an accumulator. The steps carried out by readlh are as follows: 

readl 

: <> = (readlh (read-char) []) 

readlh 

: comma line (reverse line) 

: end line send 

(readlh (read-char) line) 

(readlh (read-char) [char2digit . line]) 
(readlh (read-char) [char2symbol . line]) 

: skip line 

: char2digit line 
: char2symbol line 

Figure 4.4: Reading a Line of Input 

e If the last character read is a comma, then that character is read and the line of input, 

line, that has been constructed is reversed and returned. 

e If the last character read signifies the end of the session then the keyword :end is 

returned, to be acted upon by finish in validexpr and validvar.
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e If the last character read is a character to be skipped, it is ignored. 

e If the last character read is a character representing a digit, then it is converted to a 

digit and the reading of the input is continued with this digit added to the line read 

so far. 

e Otherwise the last character read is converted to a symbol and is added to the line 

read so far. 

In all but the first two alternates the next character is read, using read-char, and readlh is 

called again. readlh uses tail recursion together with an accumulator. 

4.2.5 Translating into Internal Representation 

The program specification contains a grammatical description of the class of algebraic ex- 

pressions to be differentiated. The task of validating and translating algebraic expressions 

from infix to fully parenthesised notation is a syntax-directed translation task that can be 

readily formulated in META-LIsP. Its definition is shown in Figure 4.5. 

It is important to emphasise that the definition of the translation of algebraic expres- 

sions into internal representation is formulated in such a way that it makes no specific 

commitment to their precise form. That is to say, whether it be fully parenthesised infix, 

prefix, postfix or mixfix form. These details are specified in the form of constructors, which 

specify how algebraic expressions are to be represented as list structures. Figure 4.6 shows 

the definition of constructors for fully parenthesised infix notation. Corresponding to these 

constructors there are abstract analysers that are used both to recognise algebraic expres- 

sions and to select their components. These are presented in Figure 4.7. Changing the 

underlying representation can thus be achieved by changing the constructors to construct 

list representation of algebraic expressions in a form that corresponds to their Abstract 

Syntax. An earlier version of the program, reported in [Laj90] was formulated without the 

benefit of synthesised attributes, e.g. explicit support for data-abstraction. Reusability of 

the program was thus severely limited.



74 CHAPTER 4. PROGRAMMING IN MeEta-LisP I 

expr 

> term 

expr + term 

expr - term 

(mk-Sum expr term) 

(mk-Diff expr term) 

term 

secondary / term 

secondary mul term 
secondary 

(mk-Quot secondary term) 

(mk-Prod secondary term) 

mul 

ok 

<> 

secondary 

>: primary ~ constant 
>: primary 

(mk-Power primary constant) 

primary 

open expr close = expr 

constant 

: var 

open 

1c 

close 

1) I 

constant 

: digit 

constant digit = (plus (times 10 constant) digit) 

digit 
anyoi234567849 

var 

anyabcdefghijklmnopqrstuvwxyaz 

Figure 4.5: Translating into Internal Representation
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mk-Sum 

:uv = [u + v] 

mk-Diff 

:uv = [u - v] 

mk-Quot 

:uv = [u / v] 

mk-Prod 

:uv = [u * v] 

mk—-Power 

:uv = [u * v] 

nmk-Minus 
: a = [- a] 

mk-Expr 

: uop v = [u op v] 

Figure 4.6: Constructors for Algebraic Expressions 

Const 

: is integerp 

Var 

: var 

sum 

: fu + vi = (@ u) (@ v) 

Diff 

: fu - vi = (@ u) (@ v) 

Prod 

: fu * vi = (@ u) (@ v) 

Quot 

: fu / vi = (@ u) (@ v) 

Power 

: fu 7 n] = (@ u) (@ n) 

Minus 

: [- a] = (@ a) [- a] 

Expr 

: [a +/- b] = [a +/- b] 

Figure 4.7: Abstract Analysers of Algebraic Expressions
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4.2.6 Derivation 

The following rules of differentiation are considered: 

d . fu = 0; if u# fle) 
ou = 1 fuse 

Le 

Aw +v) = oy + 4, 
~ dz dz 

Aw -v) = oy - 4, 
dz ~ dz dz 

+ tue) = vt + uty 
dz dz d: 
d d d 5 
ttl) = (ee - ule 

deny — ni ae ) = nu mn" 

These rules can be easily transcribed into Mera-Lisp as shown in Figure 4.8. The design 

of this function have already been discussed in Section 3.1.2. The inclusion of additional 

tules should pose no difficulty. 

  

deriv 
: Const x =0 
: Var x (if (same Var x) 1 0) 
: Sum x (nk-Sum (deriv u@Sum x) (deriv v@Sum x)) 
: Diff x (mk-Diff (deriv u@Diff x) (deriv veDiff x)) 
: Prod x = (ok-Sum 

(mk-Prod v@Prod (deriv u@Prod x)) 
(mk-Prod u@Prod (deriv v@Prod x))) 

: Quot x = (mk-Quot 

(ak-Diff 
(nk-Prod v@Quot (deriv u@Quot x)) 
(nk-Prod u@Quot (deriv v@Quot x))) 

(mk-Prod v@Quot véQuot)) 
: Power x = (mk-Prod 

n@Power 
(ak-Prod 

(mk-Power u@Power (1- n@Power)) 

(deriv u@Power x))) 

Figure 4.8: Differentiation Rules
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4.2.7 Simplification 

This part of the program handles simplification of algebraic expressions, and uses the same 

set of rules as the Primer example. simplify is a supervisor program that parcels the task of 

simplification according to the arithmetic operators involved. There are three alternatives 

to be considered depending on the kind of expression involved: if the expression to be 

sim plified 

1. is atomic, then it is already in a simplified form. 

2. has unary minus as its outermost operator, then it is simplified accordingly. 

3. involves a binary operator, then the operands are first simplified and are then passed 

to the corresponding simplification routine. 

Binary operators are handled in a data-directed way. (See [ASS85, 136-142]). As shown in 

Figure 4.9, s.ezpr is responsible for recognising the presence of binary algebraic expressions 

to be simplified. It also analyses its input, and extracts the operands u and v. These 

operands are simplified before they are passed to the appropriate simplification routine 

returned by s.op. This is another illustration of the power of syntax-directed translation 

as a parameter passing mechanism, in that components of the input are not only selected, 

as would be the case with pattern matching, but the desired transformations, in this case 

simplification, are also applied to them. 

simplify 

> a=atom 

: Minus = (s.Minus (simplify a@Minus) ) 

> S.expr = (s.op@s.expr u@s.expr v@s.expr) 

S.expr 
: [u s.op v] = (@ u <- (simplify u)) 

(@ v <- (simplify v)) 
(@ s.op) 

Op 
: any + - * / 

S.op 
iT =< s.- > 

: + =< s.t > 

: o# =< s.* > 

: / =<s./> 
7: 7 =< s.7 > 

Figure 4.9: Simplification
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The actual rules used for simplifying algebraic expressions are straight-forward. They 

can produce simpler expressions, but not necessarily the simplest. As an illustration, con- 

sider the rules for simplifying sums. Figure 4.10 shows the way these rules are presented 

on page 172 in the LISP 1.5 Primer. The rule based form of MeETA-LIsP allows for a 

For an expression of the form (PLUS a b) the following simplification rules are 

used by SPLUS. Higher-numbered rules assume prior rules failed. 

ule Value Line No. 

1. aand b= constant a+b 111 

2 a=0 b 115 

3. b=0 a 112 

4. b= constant, a # constant (PLUS b a)t 113 

5. a=b (TIMES 2 a)t 116 

6. a= (MINUS a) 

b= (MINUS 51) (MINUS (PLUS a; &)t = 121 

7. a= (MINUS a,),b= a 0 125 

8. a= (MINUS 41),b 4 constant (PLUS b a)t 126 

9. b= (MINUS 8,),a= b 0 128 

10. b= (MINUS 6,),a 4 constant (PLUS a b)t 129 

11. all else (PLUS a b)t 130 

t The ezpression is further simplified by the function COLLECT. 

Figure 4.10: SPLUS in the LISP 1.5 Primer 

particularly straight-forward way of transcribing these rules, as shown in Figure 4.11.
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: a=const b=const 

: a=0 b 

: a b=0 

: a b=const 

: ab 

: Minusa Minusb 

: Minusa b 

: a Minusb 

: ab t
o
u
 

t 
b
e
y
 

wt 
we 

ot 
ott (plus a=const b=const) 

b 

a 
(collect [b=const + a]) 

(if (equal a b) (collect [2 * a]) fail!) 
(mk-Minus (collect [a@Minusa + b@Minusb])) 

(if (equal a@Minusa b) 0 (collect [b + Minusa])) 
(if (equal a bO@Minusb) 0 (collect [a + Minusb])) 

(collect [a + b]) 

Figure 4.11: SPLUS in META-LISP 

19
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The transcription of rule 5. 

: ab ? (if (equal a b) (collect [2 * a]) fail!) 

is interesting in that it uses the semantic backtracking feature of META-LISP to impose the 

context condition that a = 6. Rules 7. and 8. are combined in the alternative 

: Minusa b = (if (equal a@Minusa b) 0 (collect [b + Minusa])) 

Similarly rules 9. and 10. are combined in the alternative 

: a Minusb = (if (equal a b@Minusb) 0 (collect [a + Minusb])) 

It is instructive to compare the META-LIsP definition with the LISP original, shown 

in Figure 4.12. The code generated by the META-LISP compiler is very similar to this 

hand-written code. 

(DEFUN SPLUS (E) 
(COND ((NUMBERP (CADDR E)) 

(COND ((NUMBERP (CADR E)) (EVAL E)) 
((ZEROP (CADDR E)) (CADR E)) 

(T (COLLECT (LIST (CAR E) (CADDR E) (CADR E)))))) 
(CAND CNUMBERP (CADR E)) (ZEROP (CADR E))) (CADDR E)) 
((EQUAL (CADR E) (CADDR E)) 

(COLLECT (LIST ’TIMES 2 (CADR E)))) 

(CAND (NOT (ATOM (CADR E))) (EQ (CAADR E) ’MINUS)) 
(COND (CAND (NOT (ATOM (CADDR E))) (EQ (CAADDR E) ’MINUS)) 

(LIST ’MINUS 

(COLLECT (LIST (CAR E) (CADADR E) (CADR (CADDR E)))))) 
((EQUAL (CADADR E) (CADDR E)) 0) 

(T (COLLECT (LIST (CAR E) (CADDR E) (CADR E)))))) 

(CAND (NOT (ATOM (CADDR E))) (EQ (CAADDR E) ’MINUS)) 
(COND ((EQUAL (CADR (CADDR E)) (CADR E)) 0) (T (COLLECT E)))) 

(T (COLLECT E)))) 

Figure 4.12: SPLUS in LISP 

The other simplification rules can be seen in Figure 4.13. It is worth pointing out, that 

this part of the program is also written in a representation independent style, although 

internally, it uses infix representation.



s.Minus 

: Const 

: Minus 

: a=const b=const 

: a=0 b 

: a b=0 

: a b=const 

: ab 

: Minusa Minusb 

: Minusa b 

: a Minusb 

: ab 

* 

: a=const b=const 

: a=0 b 

: a=lb 

: a=const b 

: a b=0 

: a bel 

: a b=const 

: ab 

: Minusa Minusb 

: Minusa b 

: a Minusb 

: ab 

: a b=0 

: a bel 

: a=atom b 

: Power c 

: Minusa b=even 

: Minusa b=odd 

: ab 

a.f 

o 
@ 

Pp b 

=0 

=1 
b= o F

o
 

oO 

: a=const b=const 

: a b=const 

: a Minusb 

: ab 
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(times -1 Const) 

a@Minus 

(mk-Minus a) 

(s.+ u (s.Minus v)) 

= (plus a=const b=const) 

b 
=a 

I
w
 

(collect [b=const + a]) 
(if (equal a b) (collect [2 * a]) fail!) 

(mk-Minus (collect [a@Minusa + b@Minusb])) 
(if (equal a@Minusa b) 0 (collect [b + Minusa])) 

(if (equal a bO@Minusb) 0 (collect [a + Minusb])) 

(collect [a + b]) 

(times a=const b=const) 

= 0 

=b 

y
 

(collect [a=const * b]) 

0 

a 

(collect [b=const * a]) 

(if (equal a b) (s.* a 2) fail!) 

= (collect [a@Minusa * b@Minusb]) 

= (if (equal a@Minusa b) 

(mk-Minus (s.* a@Minusa 2)) 

(collect [b * Minusa])) 

(if (equal a bOMinusb) 
(mk-Minus (s.* a 2)) 

(collect [a * Minusb])) 

(collect [a * b]) 

1 

a 
= (mk-Power a=atom b) 

= (mk-Power u@Power (times n@Power c)) 

= (s.* a@Minusa b=even) 

= (mk-Minus (s.* a@Minusa b=odd) ) 

(mk-Power a b) 

(if (equal a b) 1 fail!) 
= 0 
= (mk-Quot a b) 

a 
(quotient a=const b=const) 

= (collect [(quotient 1.0 b=const) * a]) 

= (s.* a (mk-Minus (mk-Quot 1 b@Minusb))) 
(mk-Prod a (mk-Quot 1 b)) 

Figure 4.13: Simplification Rules 

Sl
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4.2.7.1 Collect 

collect is a function used in simplifying both sums, products and quotients. It provides 

additional simplification rules by attempting to simplify certain patterns of nested addition 

and multiplication. These rules are shown in Figure 4.14. 

collect 

: atom 

: [a=atom op b=atom] 

: [a op b=atom] 
: [a=const + btc] 

: [a=const * b*c] 

(mk-Expr a=atom op b=atom) 

(collect [b=atom op a]) 
(mk-Sum (plus a=const b@b+c) c@btc) 

(mk-Prod (times a=const b@b*c) c@b*c) 
: [Latb + ct+d] (mk-Sum (plus a@atb c@ct+d) Gnk-Sum b@atb d@ctd)) 

: Latb * c#d] (mk-Prod (times a@a*tb c@c*d) (mk-Prod b@a*b d@c#d)) 

: [u op v] (mk-Expr u op v) 

a*b 

: Prod = (if (Const? u@Prod) 

{ (@ a <- u@Prod) (@ b <- v@Prod) } 

fail!) 

atb 

: Sum = (if (Const? u@Sum) 

{ (@ a <- u@Sum) (@ b <- v@Sum) } 

fail!) 

b*c 

: Prod = (if (Const? u@Prod) 

{ (@ b <- u@Prod) (@ c <- v@Prod) } 

fail!) 

btc 

: Sum = (if (Const? u@Sum) 

{ (@ b <- u@Sum) (@ c <- v@Sum) } 

fail!) 

c*d 

: Prod = (if (Const? u@Prod) 

{ (@ c <- u@Prod) (@ d <- v@Prod) } 

fail!) 

ctd 

: Sum = (if (Const? u@Sum) 

{ (@ c <- u@Sum) (@ d <- v@Sum) } 

fail!) 

Const? 

: Const = +t 

: <> = nil 

Figure 4.14: Collect 

These rules can be understood with reference to the definitions of these nested patterns, 

such as a*b, a+6, etc. Consider the definition of 6+c as a representative example. It refers 

to the sum of two expressions } and c such that bis a constant. With this, the fourth rule
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can be read as saying that the sum of a constant @ and the sum of 6 and e¢ such that 6 is 

also a constant, can be simplified as the sum of the result of adding @ 6 together and the 

the expression c. 

4.2.8 Show Result 

The result of derivation and simplification is displayed in the usual format for algebraic 

expressions which takes account of the precedence of the operators involved. The supervi- 

sory program for this, ou, uses the same data directed technique to parcel out the task of 

displaying the result in an infix form, with the usual conventions for operator precedence, 

as was used in organising the simplification of algebraic expression. As seen on Figure 

4.15 the task of displaying constants and variables is passed immediately to the LISP built 

in function format. The task of displaying expressions, that involve unary minus, is just 

as straight-forward. For expressions involving binary operators, the appropriate display 

routine is selected by oué_ezpr, and is applied to the operands: 

show 
: msg out =t 

msg 
1 = (format t "“&18-"4") 

out 
: Const = (format t ""S " Const) t 
: Var = (format t "78" Var) t 
: Minus = (format t "- ") (out a@Minus) 
: out.expr = (op@out.expr a@out.expr b@out.expr) 

out . expr 
: [a out.op b] = (@ a) (@ b) (@ op < out.op) 

out . op 
it = < out. Sum > 
tk = < out.Prod > 
:/ = < out. Quot > 
pt = ¢ out.Power > 

Figure 4.15: Display Result 

The original LISP code for the individual display routines were presented in the Primer 

without much discussion, as they were deemed to be simple enough to be followed by the 

reader. Hence, much of the code for the individual display routines, presented in Figure 

4.16, had to be reconstructed on the basis of examining the original LISP code. Some 

simplifications have been applied to the organisation of the code, such as factoring out 

repeated pieces of code. This lead to the introduction of a new function zterm which does
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not appear in the original formulation. 

out. Sum 

: a=const b = (out.Sum b a=const) 

: a b<O0 = (out a) (blank) (out b<0) 

: a Minus = (out a) (blank) (out Minus) 

: ab = (out a) (format t "+ ") (out b) 

b<0 

: b=const = (if (> 0 b=const) b=const fail!) 

blank 

: <> = (format t " ") 

out.Prod 

: xterm xterm 

xterm 

: atom = (out atom) 
: Expr = (wrap Expr) 

> out 

+/- 

: any + - 

wrap 

: a = (prince "(") (out a) (prince ")") 

out .Quot 

: xterm pslash xterm = t 

pslash 

: <> = (format t "/") 

out.Power 

: a=atom n 

>: an 

(format t "“S°~S " a=atom n) t 

(wrap a) (format t "“"“S "n) t 

Figure 4.16: Output Routines 

The elementary definitions for the program are shown in Figure 4.17 

4.2.9 Performance: LISP versus META-LISP 

The performance of the program written in META-LISP is identical to the LISP version. 

Although the code generated by the META-LISP compiler for effective concepts which define 

their input in terms of patterns, is very similar to the original LISP code, the code generated 

for effective concepts that are involved in parsing the input look quite different. However, 

it seems that the LUCID compiler eliminates all the apparent differences.
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* c=const 

7k is numberp 

+ char 
: 4 . _ 

- char2digit 

>= > ?#\O 
#1 

/ "H\2 
. of HVS 

#\4 
° "HAS 

a” #\G 

ENT 

1- #\8 
: with lisp 1- "#\9 

> char2symbol 

: with lisp > : char 

a comma 
. _ #\ > 

a=0 d 
- °0O 8 

=1 end 
2 HN . 

a=atom equal 
is atom : with lisp equal 

a=const format 

is numberp : with lisp format 

atom if 
is atom : with lisp if 

b intern 

2 : with lisp intern 

b=0 line 
- °0O 8 

b=1 Minusa 
2 4 [- al 

b=atom Minusb 
is atom [- b] 

b=const n 

is numberp : is integerp 

b=even plus 
is evenp : with lisp + 

b=odd princ 

is oddp : with lisp prince 

quotient 
: with lisp / 

O
O
N
A
O
T
E
W
N
R
 

OS 

89 

(intern (string char) ) 

(@ a) [- a] 

(@ b) [- b]
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read-char 
: with lisp read-char 

reverse 

: with listp reverse 

same 
: with lisp eq 

skip 

: any #\Newline #\Space 

string 
: with lisp string 

times 

: with lisp * 

Figure 4.17: Elementary Definitions for Symbolic Differentiation
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4.3. Symbolic Differentiation: A Language Oriented Design 

4.3.1 Program Strategy 

In the previous design the task of the program was partitioned in a way that involved sev- 

eral ‘passes’. I.e. the input was first examined, and translated into internal form, then this 

representation was traversed for the purpose of applying the appropriate rules of differen- 

tiation, and then it was re-examined to carry out simplification. In the language oriented 

design all these passes are not required. The rules of differentiation and simplification can 

be applied to the syntactically correct forms of the input as they are parsed. 

4.3.2 Top-Level Elaboration 

The top-level is reorganised a bit. inexpr will no longer validate the input as this will take 

place as the input is simultaneously differentiated and the result is simplified while it is 

parsed and validated. In order to achieve this it is also necessary to know the variable of 

differentiation so that the derivative of an input variable can be computed as it is recognised 

in the input. For this reason the variable of differentiation read by invar is used to set an 

inherited attribute ~x which can then be referenced in the course of differentiation a variable. 

Assuming that diff.expr will return a synthesised attribute d@diff.expr which denotes the 

derivative of the expression read in, the top-level elaboration of the program reads as follows: 

diff 

2 <> 

: diff inexpr invar = (* x <- invar) 
(diff.expr . inexpr) 

(show d@diff.expr) 

4.3.3 Revised Input Routines 

As has been pointed out inexpr in this version of the program will no longer be responsible 

for the validation of the input. Its new definition, shown in Figure 4.18 reflects this. Reading 

and validating a variable is unchanged from the previous version. This is indicated by the 

fact that it is simply imported from the previous version. 

4.3.4 Differentiating and Validating an Expression 

There is no need for a separate supervisor program to dispatch the appropriate rules. In- 

stead, we need only to state the rules of differentiation that we would like to use, as shown 

in Figure 4.19.
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inexpr 

: prompti readl (if (end? readl) fail! readl1) 

prompt 1 
: <> = (format t "~%THE DERIVATIVE OF-~4") 

end? 

: :en = ormat t A t d (f "~SFINIS~4") 

: <> 

readl 

: with diff readl 

invar 

: with diff invar 

Figure 4.18: Revised Input Routines 

Note also, that instead of constructing an internal representation for the derivative, calls 

to the appropriate simplification routines are made as the differentiation rules require the 

use of particular algebraic operations. 

The functions used for simplification and the output procedures are identical to the 

previous version, as are the constructors and the abstract analysers. Figure 4.20 shows the 

new design of the program. 

4.3.5 Comparison of the two Designs 

Undoubtedly the second version is somewhat more difficult to understand at first glance, 

as it involves the use of attributes. Apart from the difficulties presented by the use of 

attributes, the second program is just as easy to write and read as the first. In fact, by 

arranging for the calculation of the derivative and its simplification to take place as the input 

first examined in one pass, the program becomes a fair bit shorter. More significantly, there 

is gain in performance as a result of this. By comparing the performance of the two variants 

of the program in calculating and simplifying the derivative of a line of input, the second 

version used about 40% less CPU time than the first. And since the performance of the 

first version of the program written in META-LISP was identical to the performance of the 

original LISP program, we can say that, in this instance, META-LISP outperforms LISP 

itself. It should be noted, that a similar change of design could be applied to the original 

LISP program, as well. Given, the way the parser was written originally, it would not be 

that simple to incorporate all the extra functionality required. As an illustration of these 

difficulties consider the original definition of expression shown in Figure 4.22.
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d.Const 

> ou = 0 

d.Var 

: ux = (if (eq u x) 1 0) 

d.Ssum 
: du dv = (s.+ du dv) 

d.Diff 

: du dv = (s.- du dv) 

d.Prod 
: udu v dv = (s.+ (s.* v du) (s.* u dv)) 

d.Quot 

: udu v dv = (s./ (s.- (s.* v du) (s.* u dv)) (s.7 v 2)) 

d.Power 
>: nu du = (s.* n (s.* (3.7 u (1- n)) du)) 

Figure 4.19: Rules of Differentiation 

diff.expr 

: expr $ = (@ d <- d@expr) expr 
: error! inexpr = (diff.expr . inexpr) 

expr 

: term = (@ d <- d@term) term 
: expr + term = (@ d <- (d.Sum d@expr d@term) ) 

(mk-Sum expr term) 
: expr - term = (@ d <- (d.Diff d@expr d@term) ) 

(mk-Sum expr (mk-Minus term) ) 

term 

: secondary / term (@ d <- (d.Quot secondary d@secondary term d@term) ) 

(mk-Quot secondary term) 
(@ d <- (d.Prod secondary d@secondary term d@term) ) 

(mk-Prod secondary term) 
: secondary = (@ d <- d@secondary) secondary 

: secondary mul term 

secondary 

: primary *~ constant = (@ d <- (d.Power constant primary d@primary) ) 
(mk-Power primary constant) 

: primary = (@ d <- d@primary) primary 

primary 
: open expr close = (@ d <- d@expr) expr 

: constant = (@ d <- (d.Const constant)) constant 
: variable = (@ d <- (d.Var variable “x)) variable 

Figure 4.20: Differentiating and Validating an Expression
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Let (2 y ~ 3 + y) be the input to expr 

Since expr is left recursive the start-up rule (the first alternate) is expanded first. So expr 

calls term. 

Since term is right recursive it will attempt to expand its first alternate first, by calling the 

first component of its first alternate secondary. 

In turn secondary calls the first component of its first alternate primary. 

The first alternate of primary fails, since the first element of the input is not an opening 

parenthesis. Its second alternate however succeeds, since the first element of the input is a 

constant. The derivative of the constant 2 is calculated using the rule d. Const giving 0 which 

is returned as the synthesised attribute of primary. The value returned by primary is the 

value of constant 1.e. 2. 

Having successfully expanded the first component of its first alternate, secondary calls the next 

component *. This fails. Using left-factoring, which eliminates the need for backtracking (see 

Figure 3.3), secondary then returns the derivative of primary (d@primary) as its synthesised 

attribute d@secondary and the value 2. 

Having successfully expanded the first component of its first alternate, term calls the second 

component / which will fail. The second component, of the second alternate of term (i.e. 

mul) is expanded next via left-factoring, which will succeed (c.f. Figure 4.5 on page 74 for its 

definition). 

term is now invoked recursively with input (y ~ 3 + y), calling secondary which calls primary 

which succeeds with its third alternate variable, returning the derivative of the variable y 

using d.Var which is 1 (since y equals the value of the inherited attribute *x, the variable of 

differentiation which is y, c.f. Section 4.3.2) and the matched variable y. 

Having successfully expanded the first component (primary) of its first alternate, secondary 

calls the next component *, which now succeeds, indicating the presence of exponentiation. 

constant is then called and matches 3. d.Power is then used to compute the derivative of 

y° through appropriate simplifications giving (3 * (y ~ 2)) as the value of the synthesised 

attribute d@secondary and (y ~ 3) —as constructed by mk-Power— as the value of secondary. 

After an unsuccessful attempt to find further terms as part of an implicit product, the first 

recursive call to term returns with (3 * Cy ~*~ 2)) as its synthesised attribute and (y ~ 3) 

as its value. 

Given the previously computed value 2 of secondary and its synthesised attribute d@secondary 

which was 0, the semantic action 

(@ d <- (d.Prod secondary d@secondary term d@term) ) 
(mk-Prod secondary term) 

is evaluated to yield (6 * Cy * 2)) as the derivative of the product 2 y ~ 3 which is then 

returned as the synthesised attribute of term and (2 * (Cy ~* 3))—as constructed by mk-Prod 

as the value of term. 

The synthesised attribute of term is then assigned to be the first synthesised attribute of expr. 

The value of term then becomes the first value produced by expr. Given these values expr 

now attempts to expand its left recursive rules with the remaining input: (+ y). 

The expansion of the first left recursive rule will be successful in finding a new term (following 

the + sign) — with value y and derivative 1. Using the values of the synthesised attributes 

d@expr = (6 * (y ~ 2)) and d@term= 1 d.Sum produces the derivative for the entire input 

((6 * Cy * 2)) + 1). 

Figure 4.21: Differentiation in Action
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4.3.6 The Workings of the Program 

Here, as in the previous version of the symbolic differentiation program the set of valid 

inputs to the program (the class of algebraic expressions being considered) has been defined 

explicitly as a language. The grammatical structure thus imposed on the input, however, 

has not been exploited fully in the previous version. It has only been used to construct a 

suitable internal representation to be examined in further passes. The current version, in 

contrast, exploits fully the structure imposed on the input as the means of making explicit 

the applicative structure of the desired computation, viz. the calculation of the derivative. 

It is this feature of the design of the program that makes it fully language oriented. 

As an illustration of how the grammatical structure is exploited to carry out the task of 

differentiation consider the first alternative of the effective concept secondary dealing with 

exponentiation: 

: primary ~ constant = (@d <- (d.Power constant primary déprimary)) 
(nk-Power primary constant) 

The base of exponentiation is selected and recognised by the effective concept primary, 

whereas its power is by constané. Our aim is to calculate the derivative of exponentiation of 

primary to constant power. Recall that the rule of differentiation for exponentiation states: 

dp nid 
dz" ) =m dz" 

This rule is formulated in META-LIsP as: 

d.Power 

2 mu du = (s.4n (s.* (3.7 u (i- n)) du)) 

Note that the derivative of exponentiation is a function not only of the algebraic ex- 

pression that is raised to a constant power but of its derivative. Hence to apply this rule 

it is necessary to make available, in addition to the algebraic expressions involved in the 

exponentiation, its derivative. The derivative of primary is made available as a synthesised 

attribute (e.g. d@primary). And since the algebraic expression corresponding to secondary 

itself may be an operand of another composite algebraic expression, its derivative is made 

available as a synthesised attribute also, i.e. the attribute assignment: 

(@ d <- (d.Power constant primary d@primary)) 

makes available at the level of term the derivative of secondary as a synthesised attribute, 

and a suitable representation of the algebraic expression in question as its principal value 

obtained by (mk-Power primary constant). Similarly each effective concept involved in 

the definition of the input language of the program will return two values: a principal value 

representing an algebraic (sub)expression and its derivative as a synthesised attribute.
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The working of the program can be best illustrated by considering a concrete example 

and following through the steps of computation as shown in Figure 4.21. 

The present language oriented design of the symbolic differentiation program improves 

on the previous design by making explicit not only the grammatical structure of its input 

but exploiting it to capture the applicative structure of computing the desired output. At 

the same time, it also supports data abstraction and representation independent program- 

ming (c.f. pages 42-43). The combination of data-abstraction and the use of grammatical 

structures to reflect the applicative structures of intended computations, as illustrated by 

this case study, is the essence of Language Oriented Programming. 

(DEFUN EXPRESSION (E) 
(PROG (EXP X Y OP) 

(COND 

((NULL E) (RETURN NIL) ) 
((NULL (SETQ X (TERM E))) (RETURN NIL))) 

(SETQ EXP (CAR X)) 
E 

(COND 

((NULL (CDR X)) (RETURN EXP) ) 
((EQ (CADR X) ’#\+) (SETQ OP ’PLUS)) 
((EQ (CADR X) ’°#\-) (SETQ OP °*DIFFERENCE)) 

(T (RETURN (CONS EXP (CDR X))))) 
(COND ((NULL (SETQ Y (TERM (CDDR X)))) (RETURN NIL))) 

(SETQ EXP (LIST OP EXP (CAR Y))) 
(SETQ X Y) 

(GO E))) 

Figure 4.22: The Original Definition of expression
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4.4 Approximating Roots 

This section presents the initial design of a program to calculate the roots of differentiable 

functions using Newton’s method. The program reuses parts of the symbolic differentiation 

program. Apart from illustrating the method of combining separate modules in META-LIsP 

it also provides an example of a program that exploits the meta-programming capabilities 

of LISP. 

4.4.1 Top-Level Elaboration of newton 

Newton’s method for finding the roots of a differentiable function y= f(z) says that if 2; 

is an approximation to a root of the differentiable function f, then a better approximation, 

Zk+41 can be obtained by the following iteration: 

Tei =t,-A 

where 
aa fee) 

F'(zx) 
Figure 4.23 shows the the top-level elaboration of the program. The program reads an 

  

expression and the independent variable used in the expression for f(z) and reads in an 

initial guess. The program then translates the expression read into fully parenthesised prefix 

notation while constructing simultaneously an expression that represents its derivative. 

These expressions are then used to construct appropriate LISP functions that can then be 

used to compute both the value and the derivative of the function at given points. In doing 

so the program intends to “capitalise on the pun that an expression that describes the value 

of a function may also be interpreted as a means of computing that value” [ASS85, 335]. 

Given that the inherited attributes ~£ and “df denote these functions calc-reot is then called 

with the initial guess to calculate the roots. 

newton 

: imexpr invar inguess = (* f <- 
[lambda 

Linvar] 
(diff.expr . inexpr)]) 

(* df <- [lambda Linvar] dédiff.expr]) 
(calc-roots inguess) 

Figure 4.23: Top-Level Elaboration of newton
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4.4.2 The Main Body of the Program 

In most cases there may be more than one roots to be calculated. Hence, calculating the 

roots will be repeated until the user quits the program by typing q. The supervisor for the 

program is calc-roots that carries out the iteration. The calculation of the root starts with 

one step of improving the initial guess. The calculation of successive improvements to the 

original guess is iterated until the value of A becomes sufficiently small. 

Improve returns two values: the ratio of the value of the function for a given guess and 

the value of its derivative computed for the same guess (i.e. A); the second value is the 

improved guess, which is obtained as the difference between the original guess and A. Note 

that these values are computed by applying the LISP representation of these functions to 

appropriate argument. 

Figure 4.24 show the META-LiIsP definitions for these functions. Note that ratio handles 

the error of attempting to divide by zero. The remaining definitions that complete the 

calc-roots 

> quit 

: guess = (improve (float guess) ) 
(show-root (iter delta@improve guess@improve) ) 

(calc-roots (inguess) ) 

iter 

(if (> (abs delta) 1.0E-10) 
{ (improve improved_guess) 

(iter delta@improve guess@improve) } 

improved_guess) 

: delta improved_guess 

improve 
: guess = (@ delta <- 

(ratio 

(apply “f [guess]) 

(apply “df [guess]))) 
(© guess <- (difference guess delta@improve) ) 

ratio 
: u zero = (format t ""ZAttempt division by zero™%") 0 

: uv = (quotient u v) 

Figure 4.24: Calculating Roots 

program are shown in Figure 4.25. Note that diff.ezpr is imported from the module diffpx, 

which itself is made up from the components of the second, language oriented design of the 

symbolic differentiation program and a collection of abstract analysers and constructors 

that define prefix notation for algebraic expressions.
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Issues of robustness and adaptability [DJ83, 102-106] were not even addressed in the 

design of the program. As a consequence it is prone to go into an infinite loop. Nevertheless, 

it has illustrated important points about program design in META-LISP: 

e software reuse in META-LISP 

e the power and convenience of exploiting the meta-programming capabilities of LISP 

e the use of META-LISP in expressing numerical computations 

A trace of the execution of the program is shown opposite. 

inexpr 

: prompt-expr readl readl 

> : with lisp > 

abs : with lisp abs 

apply : with lisp apply 

inguess : <> (format t "Enter Initial Guess: ") (read) 

improved_guess : _ 

delta : _ 

difference : with lisp - 

diff.expr 
: with :diffpx diff.expr 

float : with lisp float 

guess : is numberp 

prompt -expr 

: <> = (format t " ;; Calculating Roots “4Enter Formula: ") 

quit : any q quit 

quotient : with lisp / 

read : with lisp read 

root : 

show-root 

: root = (format t "~“%The root found is: ~S7%" root) 

Figure 4.25: Elementary Definitions for newton
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Type ? for commands 

O> newton : nil ; 1 

;; Calculating Roots 

Enter Formula : K*~3-9X+4, 

WITH RESPECT TO- 

x, 
Enter Initial Guess: 0 

<1 newton : (<- “f) 

= (lambda (x) (+ (+ (7 x 3) (- (* 9 x))) 4)) ; 
<i newton : (<- “df) 

= (lambda (x) G -9 (* 3 (7 x 2)))) ; 
1> iter : (-0.4444444444444444 0, 4444444444444444) ; 

2> iter : (-0.010442160221895892 0.4548866046663403) ; 

3> iter : (-1.7486507382534088E-5 0.4549040911737228) ; 

4> iter : (-4.980058755359147E-11 0.45490409122352344) ; 

<4 iter : (-4.980058755359147E-11 0.45490409122352344) 

= 0.45490409122352344 ; 

<3 iter : (-1.7486507382534088E-5 0.4549040911737228) 

= 0.45490409122352344  ; 

<2 iter : (-0.010442160221895892 0.4548866046663403) 

= 0.45490409122352344 ; 

<i iter : (-0.4444444444444444 0. 4444444444444444) 

= 0.45490409122352344  ; 

The root found is: 0.45490409122352344 

Enter Initial Guess: 3 

1> iter : (0.2222229999999992 2.7777TTTTTTITTTTT) Os 

2> iter : (0.0306379678107426 2.747139809967035)  ; 

3> iter : (5.713656040427687E-4 2.746568444362992) ; 

4> iter : (1.9736725112545713E-7 2.746568246995741) ; 

B> iter : (2.3717925759785976E-14 2.7465682469957176) ; 

<5 iter : (2.3717925759785976E-14 2.7465682469957176) 

= 2.7465682469957176 ; 

<4 iter : (1.9736725112545713E-7 2.746568246995741) 

= 2.7465682469957176_ ; 

<3 iter : (5.713656040427687E-4 2.74656844436 2992) 

= 2.7465682469957176 ; 

<2 iter : (0.0306379678107426 2.747139809967035) 

= 2.7465682469957176 ; 

<1 iter : (0.22229999999999292 2.7777T7T77TTTTTTTT) 

= 2.7465682469957176 ; 

The root found is: 2.7465682469957176 

Enter Initial Guess: -3 

1> iter : (0.22222299992929299292 -3.2222222299929223) ; 

2> iter : (-0.020562368388455415 -3.201659853833767) ; 

3> iter : (-1.8750008829361548E-4 -3.2014723537454733) ; 

4> iter : (-1.5526232439317245E-8 -3.201472338219241) ; 

B> iter : (-3.2671222098523193E-16 -3.2014723382192405) ; 

<5 iter : (-3.2671222098523193E-16 -3.2014723382192405) 

= -3.2014723382192405 ; 

<4 iter : (-1.5526232439317245E-8 -3.201472338219241) 

= -3.2014723382192405 ; 

<3 iter : (-1.8750008829361548E-4 -3.2014723537454733) 

= -3.2014723382192405 ; 

<2 iter : (-0.020562368388455415 -3.201659853833767) 

= -3.2014723382192405 ; 

<1 iter : (0.222229999999999292 -3,2222229292292922223) 

= -3.2014723382192405 ; 

The root found is: -3.2014723382192405 

Enter Initial Guess: q 

Done 

<O newton : nil 

Figure 4.26: Tracing newton



Chapter 5 

Programming in MEta-LisP II 

The purpose of this Chapter is to extend further the basis of evaluating the potential of 

language oriented programming. It also serves the purpose of enabling direct comparison 

with Prolog. 

Section 1 presents a small Prolog program for solving the “Water Container Puzzle” 

[Kow79, 75]. Section 2 describes a solution to this problem developed in METa-Lisp. 

Section 3 discusses the design of a program for the graphical display of parse-trees. 

5.1 Path Finding 

Any problem can be formulated as a path-finding problem: 

Given an initial state A, a goal state Z, and operators which transform one state 

into another, the problem is to find a path from A to Z. [Kow79, 75] 

Given Goal 

  

    
both empty 

Figure 5.1: The Water-Container Puzzle 

The Water-Container Puzzle can be formulated as a path-finding problem: 

97
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Given both a seven and a five litre container, initially empty, the goal is to find a 

sequence of actions which leaves four litres of liquid in the seven litre container. 

There are three kinds of actions which can alter the state of the containers: 

1. A container can be filled. 

2. A container can be emptied. 

3. liquid can be poured from one container into the other, until the first is 

empty or the second is full. 

Prolog is ideally suited to formulate these kinds of problems. The rules that govern the 

transition from one possible state to another can naturally be formulated as Prolog clauses. 

They are shown in Figure 5.2. In addition to defining the admissible state transitions these 

tules also associate a description of the action that these rules define. 

The task of finding a path is simply left to the inference mechanism of Prolog. There are 

many solutions to the puzzle. In the course of finding solutions Prolog’s inference mechanism 

will face non-deterministic choices. Backtracking to these choice points is automatic in 

Prolog. Figure 5.3 shows the part of the program that is responsible for the exploration of 

all possible solutions. The program constructs a list of visited states which is then used to 

avoid looping. 

state(_,Y,7,Y," Fill up 71 container "). 
state(X,_,X,5," Fill up 51 container "). 

state(_,Y,0,Y," Empty 71 container "). 

state(X,_,X,0," Empty 51 container "). 

state(U,V,0,Y," Empty 71 container into 51 container ") 
:- Yis U+V, ¥Y =< 5. 

state(U,V,X,0," Empty 51 container into 71 container ") 

:- Xis U+V, K =< 7. 

state(U,V,7,Y." Pour from 51 container till 71 container is full ") 
:- ZisU+V,Z> 7, Yis Zo 7. 

state(U,V,X,5," Pour from 71 container till 51 container is full ") 
:- ZisU+V, 24> 5, XisZ- 5. 

Figure 5.2: State Transitions in Prolog 

Figure 5.4 shows a small portion of the output of the program.



5.1. PATH FINDING 

g(X) :- go(0,0,X,_,([0,0]],[ " Initial State "]). 

go(X,_,X,_,8,P) 
:- reverse(S,RS), 

reverse(P,RP), 
show(RS,RP), nl, write (-------- ), nl, fail. 

go(X,Y,G,_,58,P) 
:- state(X,Y,U,V.W), 

\+(member(LU,V],8)), 

\+ (X=@) , 
go(U,V,G,_, (LU,V] 1S], (WIP). 

show([],[]). 
show([SIT],(PIQ]) :- print(S), tab(1), printstring(P), nl, show(T,Q). 

printstring([]). 
printstring(LH|T]) :- put(H), printstring(T). 

Figure 5.3: The Water-Container Puzzle in Prolog 
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[0,0] Initial State 
[7,0] Fill up 71 container 

[7,5] Fill up 51 container 
[0,5] Empty 71 container 

[5,0] Empty 51 container into 71 container 
[5,5] Fill up 51 container 

[7.3] Pour from 51 container till 71 container is full 
[0,3] Empty 71 container 

[3,0] Empty 51 container into 71 container 
[3,5] Fill up 51 container 

[7,1] Pour from 51 container till 71 container is full 
[0,1] Empty 71 container 

[1,0] Empty 51 container into 71 container 
[1,5] Fill up 51 container 

[6,0] Empty 51 container into 71 container 
[6,5] Fill up 51 container 

[7.4] Pour from 51 container till 71 container is full 
[0,4] Empty 71 container 

[4,0] Empty 51 container into 71 container 

[0,0] Initial State 
[7,0] Fill up 71 container 

[2,5] Pour from 71 container till 51 container is full 
[7,5] Fill up 71 container 

[0,5] Empty 71 container 
[5,0] Empty 51 container into 71 container 

[5,5] Fill up 51 container 
[7.3] Pour from 51 container till 71 container is full 

[0,3] Empty 71 container 
[3,0] Empty 51 container into 71 container 

[3,5] Fill up 51 container 
[7,1] Pour from 51 container till 71 container is full 

[0,1] Empty 71 container 
[1,0] Empty 51 container into 71 container 

[1,5] Fill up 51 container 
[6,0] Empty 51 container into 71 container 

[6,5] Fill up 51 container 
[7.4] Pour from 51 container till 71 container is full 

[0,4] Empty 71 container 
[4,0] Empty 51 container into 71 container 

[0,0] Initial State 

[7,0] Fill up 71 container 

[2,5] Pour from 71 container till 51 container is full 
[0,5] Empty 71 container 

[5,0] Empty 51 container into 71 container 
[5,5] Fill up 51 container 

[7.3] Pour from 51 container till 71 container is full 
[0,3] Empty 71 container 

[3,0] Empty 51 container into 71 container 
[3,5] Fill up 51 container 

[7,1] Pour from 51 container till 71 container is full 
[0,1] Empty 71 container 

[1,0] Empty 51 container into 71 container 
[1,5] Fill up 51 container 

[6,0] Empty 51 container into 71 container 
[6,5] Fill up 51 container 

[7.4] Pour from 51 container till 71 container is full 
[0,4] Empty 71 container 

[4,0] Empty 51 container into 71 container 

[0,0] Initial State 
[7,0] Fill up 71 container 

[2,5] Pour from 71 container till 51 container is full 
[2,0] Empty 51 container 

[0,2] Empty 71 container into 51 container 
[7,2] Fill up 71 container 

[4,5] Pour from 71 container till 51 container is full 

Biguira % Ae GAlatianc ta tha Wratar Clantainar Pissla
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5.2. The Water-Container Puzzle in META-LISP 

In contrast to the Prolog solution, in META-LISP, each individual state transition is for- 

mulated as an effective concept, i.e. a functional unit on its own right. The state of the 

containers is represented as a pair of integers « and y. The result of a state transition 

is formulated in terms of synthesised attributes, corresponding the the next state of the 

containers and a description of the transition that lead to this new state. 

£7 

> xy = (@ x <- 7) (@ y) (@ step <- "Fill up 71 container") 

fb 

> xy = (@ x) (@ y <- 5) (@ step <- "Fill up 51 container") 

e7 

> xy = (@ x <- 0) (@ y) (@ step <- "Empty 71 container") 

e5 
> xy = (@ x) (@ y <- 0) (@ step <- "Empty 51 container") 

pe? 

> xy = (if O=5 (+x y)) 
{(@ x <- 0) 

(@ y <- (+ x y)) 
(@ step <- "Empty 71 container into 51 container") } 

fail!) 

ped 
> xy = (if O=7 (+x y)) 

{(@ x <- (+ x y)) 

(@ y <- 0) 
(@ step <- "Empty 51 container into 71 container") } 

fail!) 

pt7 

> xy = (if © (+ x y) 7) 
{(@ x <- 7) 

(@ y <- (- (+ x y) 7)) 
(@ step <- "Pour from 51 container till 71 container is full")} 

fail!) 

pfs 

> xy = (if © Gx y) 5) 
{(@ x <- (- (+ x y) 5)) 

(@ y <- 5) 
(@ step <- "Pour from 71 container till 51 container is full")} 

fail!) 

Figure 5.5: State Transitions in META-LISP 

Given the individual state transition functions, solutions to the Water-Container Puzzle 

are formulated in META-LIsP as follows: The program takes as input some path leading 

from the initial state to some current state. A path is represented as a list of visited states
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and two integers that specify the last visited state. Extending the path involves an attempt 

to extend a path with a given state transition function. If the current state was such that a 

new state can be reached by the application of some transition function, then the program. 

attempts to extend further the path from the new state onwards. Eventually the goal state 

will be reached. At that point the just completed path is printed. After which failure is 

returned. This failure then causes semantic backtracking at the level of eziend_path, so that 

the next available, yet untried state transition is tried. Then a new attempt is made to 

extend the path from that point onwards. Note that if a newly reached state is not the 

goal state go will test if that state had been visited, and if it had been visited, then ge will 

cancels the last state-transition, and again forces backtracking to consider the next available 

state-transition. 

ucp 
%@G)ucp 1.5 12/27/91 

: initial_path = (extend_path . initial_path) 

initial_path : <> = [[[0 0" Initial State"]] 0 0] 

  

extend_path 
: path £7 7 (go path x@f7 y@f7 stepef7) 
: path £5 7 (go path x@f5 y@fS stepe@f5) 
: path e7 7 (go path x@e7 y@e7 step@e7) 
: path eb 7 (go path x@e5 y@e5 step@ed) 
: path pe? 7 (go path x@pe7 y@pe7 stepepe7) 
: path ped 7 (go path x@pe5 y@pe5 stepépeS) 
: path pf? 7 (go path x@pf7 y@pf7 stepépf7) 
: path pf5 7 (go path x@pf5 yépf5 stepépfs) 

go 
: path goal y step = (show_path . (reverse [[goal y step] . path])) 

fail! 
: path x y step = (if (visited? [x y] path) 

fail! 
(extend_path [[x y step] . path] x y)) 

show_path 
: § (format t ""%"% "y 

  = (format t "“%0°A,~A] " x y) 
(princ step) 
(show_path . rest) 

: [x y step] rest 

Figure 5.6: The Water-Container Puzzle in MrTa-Lisp 

What this all amounts to is that in the MeTa-Lisp formulation of a path-finding prob- 

lem, choice points for backtracking has to be set up explicitly by the programmer. This 

represents a great deal more effort. However, in the same way as in Prolog, there is a clearly 

identifiable programming idiom associated with these kinds of problems. Admittedly, the
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goal : ’4 

visited? : with listp member 

+ : with lisp + 

- : with lisp - 

> : with lisp > 

2= : with lisp >= 

elem: _ 

equal : with lisp equal 

format : with lisp format 

list : 

path : _ 

princ : with lisp princ 

rest: . 

reverse : with lisp reverse 

sought : _ 

step : 

xX: 

yo - 

Figure 5.7: Elementary Definitions in wep 

MeEtTA-LISP idiom is a bit more difficult perhaps to grasp, for the first time, but can be just 

as effective. In fact, it can be argued, that the procedural interpretation of Prolog requires 

the programmer to visualise a very similar process, which cannot be said to be any simpler. 

Needless to say the output of the two programs is identical. Since it is much easier to do 

these things in META-Lisp the output format was biased towards a form that Prolog can 

handle easier. 

It is worth emphasising, in conclusion, that there is a lot to be said in favour of the META- 

Lisp solution to inherently non-deterministic problems, as the Water-Container Puzzle. 

For such problems, it is required to set up choice points and backtracking explicitly. The 

advantage of this is that when there is no need for backtracking, there is no need to worry 

about how undesired backtracking can be pruned, as in Prolog.
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5.3 Parse Tree Printing 

From the point of view of programming methodology the graphical display of parse-trees 

is interesting because it presents a clear example of a programming task that can best be 

thought of as a compilation task. 

The task is simply the following. Given some representation of a parse tree, like below 

Clexpr" (term! (“factor" "al)) + 
(iecpe" 
(term ('factor" a") "*" ("term (factor" a")))))) 

display it in some suitable fashion. like this, say: 

     
HH Eo o 

The analogy with compilation can be said to go deeper, than the idea that the meaning 

of a program is given in terms of instructions for a computer to execute. In fact, on reflection 

the need for some kind of “intermediate” code will become apparent. 

The form that this inter-mediate code should take is influenced by the capabilities of the 

graphics primitives that are available. The parse-tree display program of this section can 

generate both instructions for the picture environment of IATRX as well as instructions for 

GARNET. What really dictates the form of this intermediate representation is the logical 

dependencies between structural components of what we are trying to display. Furthermore, 

the requirement of being able to break up a parse tree into smaller ones, that can be fitted 

into a given display size, dictates many of the design decisions, and in fact makes the 

construction of an intermediate form unavoidable. 

The details of these will not be given. However, Figure 5.8 illustrates the inter-mediate 

code for the parse-tree shown at the beginning of the section. 

Figure 5.9 presents the generated JAT@X code. Figure 5.10 shows the top-level elabora-
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= (:tree 180 50 (:node "expr" 26 20) 

(: branches 

(:tree 40 50 (:node "term" 27 20) 

(: branches 

(:tree 40 50 (:node "factor" 40 20) 

(:branches (:leaf (:node "a" 11 20)))))) 

(:leaf (:node + 10 20)) 

(:tree 110 50 (:node "expr" 26 20) 
(: branches 

(:tree 110 50 (:node "term" 27 20) 

(: branches 

(:tree 40 50 (:node "factor" 40 20) 

(:branches (:leaf (:node "a" 11 20)))) 

(:leaf (:node "*" 10 20)) 

(:tree 40 50 (:node "term" 27 20) 

(: branches 

(:tree 40 50 (:node "factor" 40 20) 

(:branches (:leaf (:node "a" 11 20)))))))))))) 

Figure 5.8: Parse-Tree Decorated with Display Information 

105 

tion of the translator into “intermediate” code. The heart of the first phase of the Parse-Tree 

display routine is the procedure that splits a tree into smaller trees if the whole tree would 

not fit into the available display size. It is this part of the program that would be difficult to 

formulate using standard compiler-compilers, say YACC. New YACC would stand a better 

chance of coping with this problem. But the burden of processing in that case would fall 

onto the rewrite rules over the parse-tree of the parse-tree. Its only in META-LIsP that 

semantic processing can be specified as a continuum of syntactic elaborations.
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Figure 5.9: ATpX Code
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c.ptree 

: c.node 

= (@ x <- x@c.node) 

(@ y <- y@c.node) 
(@ trees <- []) 

(@ tree <- [:leaf c.node]) 

[c.node c.Branches] 

= (@ tree <- 

(fit-tree 

(max x@c.node x@c. Branches) 

(+ “y-label (* 1.5 “y-sep) y@c.Branches) 

c.node 

c.Branches )) 

(@ x <- x@fit-tree) 

(@ y <- y0fit-tree) 
(@ trees <- [. trees@fit-tree . trees@c.Branches] ) 

tree@c.ptree 

c.node 

: node-or-label 

= (@ node-or-label) 

(@ x <- (label-x node-or-label)) 
(@ y <- “y-label) 

[:node node-or-label x@c.node y@c.node] 

c.Branches 

: 
= (@ x <- (* -1 “y-sep)) 

(@ y <- (* -1 “y-sep)) 
(@ trees <- []) 

: c.ptree c.Branches 
= (@ x <- (+ x@c.ptree “y-sep x@c.Branches) ) 

(@ y <- (max yOc.ptree y@c.ptree)) 
(@ trees <- [. trees@c.ptree . trees@c.Branches]) 

[tree@c.ptree . c.Branches] 

Figure 5.10: Calculating the Dimensions of a Tree 
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fit-tree 
: x y DNode _branches 

= (if (fits x ) 

{ (@x) 
(@ y ) 
(@ trees <- []) 

(@ tree <- [:tree x y DNode [: branches . _branches]]) } 
{ (if (pred (elided? (xtract-max . _branches))) 

(@ x <- x@c.ptree) 

(@ y <- y@c.ptree) 
(@ trees <- []) 

(@ tree <- tree@c.ptree) } 
{ (fit-tree 

(+ (- x (x-of max@xtract-max)) (x-of-label (node-of max@xtract-max) )) 
(+ *y-label (* 1.5 *y-sep) (adjust-y position@xtract-max _branches) ) 

DNode 

(subst-nth (mk-stub n) position@®xtract-max _branches) 

) 
(@ x <- x@fit-tree) 

(@ y <- yefit-tree) 

(@ trees <- [. trees@fit-tree (mark-tree n max@xtract-max) ]) 
(@ tree <- tree@fit-tree) }) }) 

Figure 5.11: Fitting a Tree into Displays



Chapter 6 

Denotational Semantics in 

META-LISP 

Denotational semantics is a methodology for defining the mathematical meaning of program- 

ming languages and systems. The essence of denotational definitions is that they allow the 

specification of the meaning of the phrases of a language in terms of functions defined over 

the meanings, or denotations, of their component phrases. For the purpose of denotational 

definitions only the phrase structure of the syntax of a language is of interest. The rules 

that are used to describe the phrase structure of a language constitute the abstract syntax 

of a language. The sets that are used as value spaces in programming language semantics 

are called semantic domains. The meaning, or denotation of abstract syntax structures of a 

language are drawn from these domains. The mapping of the abstract syntax structures of 

a language to their denotations are given in terms of valuation functions. In specifying the 

meaning of individual constructs of a language, the valuation functions make use of func- 

tions over semantic domains. These functions and their associated domains are normally 

presented together in the form of semantic algebras. 

One advantage of denotational definitions is that it is possible to derive language pro- 

cessors, such as compilers or interpreters, directly from their denotational definitions. The 

approach to the construction of compilers for a language from its denotational definition 

is known as the compile-evaluate method. [Sch86, 217]. According to this method, the 

valuation functions are used as specification for a translator of source programs into their 

denotation in terms of complex functional expressions. A separate evaluation phase is then 

used to obtain the output of the program for given actual input. It is also possible to trans- 

late a program to its denotation and evaluate it simultaneously with its run time arguments. 

The result is an interpreter for the language derived from its denotational semantics. 

109
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A number of systems have been developed to serve as tools for deriving language proces- 

sors directly from a denotational definition of their semantics. The first semantics directed 

compiler generating system based on denotational semantics developed was Mosses’s Se- 

mantic Implementation System (SIS). See [Mos79]. It uses the compile-evaluate method. 

The “machine-code” is a simple functional language, called LAMB, based on the lambda 

calculus. SIS has been used to implement its own languages: the Denotational Semantics 

Language (DSL), and the language GRAM, used for dealing with syntax matters. The 

mapping from DSL into LAMB is itself described in DSL. SIS is bootstrapped, very much 

the way META-LIsP has been implemented. 

Wand’s Semantic Prototyping System consists of a set of programs for testing and 

exercising denotational style language specifications. The system is built largely in Scheme 

(a dialect of LISP), and is used to serve as an efficient lambda-calculus interpreter. The 

systems parser generator is YACC. The denotational semantic equations, coded in Scheme, 

are appended to the YACC grammar rules. SPS uses a type checker that validates the 

domain of definitions and semantic equations for well-definedness. 

Paulson’s Semantic Processor (PSP) system is a semantics directed compiler generator 

that generates stack machine code. See [Pau84]. The semantic grammar notation used to 

define a language is a hybrid of denotational semantics and attribute grammars. 

These systems offer distinct advantages. Using them can ensure the correctness of 

language implementations. They allow experimentation in the design of new languages. 

These experiments can also help in “debugging” formal language descriptions themselves. 

A common feature of these systems is that they enable the specification of both the 

concrete and the abstract syntax of a language, together with the specification of the eval- 

uation rules in a form that can be interpreted to produce appropriate denotations or actual 

values. All these tasks can be readily specified in META-Lisp. The mapping from concrete 

syntax of a language to its abstract syntax is a task for which META-LISP is eminently 

suitable. The mapping of abstract syntax structures to their denotation, using valuation 

functions, can equally well be described in MET«-LISP. 

The aim of this Chapter is to illustrate how META-LISP can be used as the vehicle 

of writing denotational language definitions. The denotational definition of the language 

of a simple Calculator will be developed alongside the description of a denotational style 

interpreter for it in META-LisP. The purpose of adopting this mode of presentation is to 

emphasise the close correspondence between the two formulations. It also serves the purpose 

of introducing the format of denotational definitions in META-LisP. The same format will 

be used in the next Chapter in defining the semantics of META-LIsP itself.
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6.1 

THE CALCULATOR 

The Calculator 

111 

The following description of a simple calculator and the denotational definition of the se- 

mantics of the language that it accepts is based on Chapter 4 of the book on denotational 

semantics by David A. Schmidt [Sch86]. 

  

  

  

      

  

[2] 

  

    

Figure 6.1: The Calculator 

Expressions in the language of the calculator can be entered by pressing buttons on the 

device shown in Figure 6.1. The output appears on a display screen. The calculator can 

carry out addition and multiplication. It can recall the value of the last calculation. It 

also allows the user to enter a form of if-then-else expression. A session with the calculator 

might go: 

press ON 
press (4412) #2 
press TOTAL 
press 1 + LAST 
press TOTAL 
press IF LAST+1,0,2+4 
press TOTAL 
press OFF 

(the calculator prints 32) 

(the calculator prints 33) 
(the second branch of the conditional is taken) 
(the calculator prints 6) 

Figure 6.2: Example Session with the Calculator 

The denotational definition of the semantics of a language consists of three parts: 

e the definition of the abstract syntaz of the language. 

e The specification of the sets and operations used to specify the meaning of the phrases
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of the language. These are usually given in the form of semantic algebras. 

e The specification of the valuation functions which map the abstract syntax structures 

of the language to their meanings drawn from semantic domains. 

The above format of denotational definitions will be reflected in the organisation of the 

remainder of the Chapter. For the purposes of the present discussion the “Calculator” will 

be identified with its input language. 

6.2 Syntax of the Calculator Language 

Figure 6.3 gives the abstract syntax of the language of the Calculator. 

P € Program 

S € Expr-sequence 

E € Expression 

N € Numeral 

D € Digit 

Poo:s ON S (1) 

S ous E TOTAL S (2) 

| E TOTAL OFF (3) 

E — E,+ Es (4) 

| FE, * Es (5) 
| IF Ej, Ep, E3 (6) 
| LAST (7) 

| (CE) (8) 

| oN (9) 

N ons ND (10) 

| oD (11) 

Do s= Of]1)2]3/4]5/6]/7/8]9 (12) 

Figure 6.3: Abstract Syntax of the Calculator
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The abstract syntax indicates that a session with the calculator starts by pressing the 

“ON” key which is followed by entering an expression sequence. An expression sequence 

consists of one or more expressions separated by a single occurrence of pressing the “TO- 

TAL” key. The expression sequence, as well as the session with the calculator, is terminated 

by pressing the “OFF” key. The syntax for an expression specifies only the use of the op- 

erators for addition and multiplication. It also allows a limited form of choice function, 

parentheses and “recall” of the last answer. 

For the purposes of providing a denotational definition of the semantics of a language 

a mapping from the concrete to the abstract syntax of the language is assumed. Since 

the purpose of developing a denotational style definition in META-LIsP for the language of 

the Calculator is to be able to derive an interpreter from its denotational definition, it is 

necessary to supply an appropriate mapping from the concrete to the abstract syntax. This 

involves the construction of the following programs: 

1. a reader and lexical analyser for the language (calc-lez) 

2. a translator of the concrete syntax of tokens of the language to a suitable internal 

representation of the abstract syntax of the language (cale-c2a) 

3. A parser for the internal representation of the abstract syntax (calc-abst). 

The following subsections will introduce these routines. 

6.2.1 Lexical Analysis 

The construction of a reader/lexical analyser is a routine task. The aim is to translate the 

stream of input characters into tokens of the language of the calculator. Tokens will be 

represented as strings, with the exception of numerals from 0 to 9. Figure 6.4 shows the 

input and the corresponding output of the lexical analyser on the example session introduced 

earlier. 

The following lexical conventions are enforced by the lexical analysis routine: 

e the keywords of the language (ON, TOTAL, IF, LAST) as well as the reserved symbols 

(‘+?, f*?, £C?, *)’, *,?) are represented as strings, 

e Digits are represented as numbers from 0 to 9, 

The LISP reader is used this time, once the special characters such as comma, have been 

read from the input. Straightforward modification of the reader routine of the symbolic 

differentiation program presented in Chapter 4 (see 4.2.4 on page 72) will do the job.
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| ?= (calc-lex) 

ON 

(4+12)%* 2 
TOTAL 

1 + LAST 
TOTAL 

IF LAST +1,0,2+4 
TOTAL 

OFF 

calc-lex = C"ON" ne" 4 non 1 2? nyu Mayet 2? "TOTAL" 1 Non “NT AST" "TOTAL" 

A ee “TAST" Not 1 mM 0 mM 2? Non 4 "TOTAL" "OFF" ) 

Figure 6.4: Lexical Analysis of the Example Session 

White Spaces will be skipped, Special characters, such as comma and opening and closing 

parenthesis will be converted into strings. Any other input is read by the LISP read function 

and, with the exception of numerical input, will be converted into tokens represented as 

strings. The Meta-Lisp code for this is shown in Figure 6.5. 

Relying on the LISP reader may result in an error for incorrect input. The lexical 

analyser could be made robust by supplying a suitable definition of read-item, in META- 

Lisp, to handle erroneous input, as has been done in the Symbolic Differentiation Program. 

However, introduction of these refinements would not be pertinent to the present discussion. 

The use of the LISP reader to process well-formed input is sufficient for the present purpose. 

6.2.2 Concrete to Abstract Syntax 

Devising an appropriate description of the concrete syntax of the Calculator Language is 

fairly straightforward. Care need only be taken to respect the usual rules of precedence and 

associativity of the arithmetic operators involved. The question of what concrete represen- 

tation to use for the abstract syntax of the Calculator language is less straightforward. One 

possible approach is to generate a parse tree and use that as the concrete representation 

of the abstract syntax. Note, however, that not all productions that are used in deriving a 

sentence of the language are to be reflected in the parse tree representation, if it is to be 

used as the concrete representation of the abstract syntax. The advantage of this approach 

is that in developing the mapping from concrete to abstract syntax the parse tree form can
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calc-lex 

: <> (readlh (peek) []) 

readlh 
: skip line 

: special line 

(read-char) (readlh (peek) line) 

(read-char) 
(readlh (peek) [(string special) . line]) 

(if (equal "OFF" read) 
(reverse ["OFF" . line]) 

(readlh (peek) [read . line])) 

: read line 

peek : with lisp peek-char 

skip : any #\Space #\Newline 

line : 

special : any #\, #\( #\) 

read : = (mk-string (read-item) ) 

read-item : with lisp read 

nk-string 
: is fixp 

= (string _) 

string : with lisp string 

read-char : with lisp read-char 

equal : with lisp equal 

reverse : with listp reverse 

Figure 6.5: Lexical Analyser for the Calculator Language 

readily be visualised in a way that makes the structures of interest apparent. The disad- 

vantage of the latter method is that writing a grammar for the internal representation of 

the abstract syntax will be cluttered with the names of the phrases of the language being 

represented. An alternative approach is to represent composite phrases as lists formed of 

their components. In this way the phrase structure of the language will be readily identi- 

fiable, with very little clutter (e.g. brackets around composite phrases). The disadvantage 

of this representation is that it is not as easy to make out the phrase structure from nested 

list structures as it is from parse-trees. 

The strategy adopted here combines the advantages of both approaches, by constructing 

the definition of the abstract syntax of the language of the calculator in two steps. First 

a parser is written for the language represented as tokens. The parser is written in such a
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way that it can generate either a parse tree or a list structure representation of the phrase 

structure of the language. The parse tree form is used to validate the parser. Figure 6.7 

shows the MeTa-LispP definition of the parser of stage 1. Figure 6.8 shows the definition 

of the abstraction function abst which is used to construct alternatively subtrees or the 

corresponding list structure representation. The list structure representation of the phrase 

structure of the language is then used in the second stage. In the second stage, a grammatical 

description of the list structure representation of the phrase structure of the language is 

formulated. This, in effect, constitutes a META-LISP specification of the abstract syntax of 

the language. Similarly to the parser for the concrete syntax of the language, the parser 

for the abstract syntax representation is written in such a way that it can generate either 

a parse tree (which will be in accordance with the abstract syntax, an abstract parse tree) 

or again a list structure representation of the abstract syntax. That is to say, it defines 

an identity transformation on the list structure representation of the abstract syntax of 

the language. Figure 6.9 shows the concrete derivation tree of the example session, as 

produced by the parser for the Calculator Language. Figure 6.6 show the corresponding 

list structure representation of the abstract syntax. Figure 6.11 shows the definition of the 

abstract syntax of the Calculator Language in META-LIsP. Figure 6.10 shows the abstract 

parse tree for the example session. 

C"ON" 

cccre 

(4 Non (1 2)) myn) Nyt 2) 

"TOTAL" 
ca Non "LAST") 

"TOTAL" 
CCUIF" ("LAST" tan 1) non 0 non (2 tan 4)) 

"TOTAL" 
"OFF")))) 

Figure 6.6: Internal Representation of the Abstract Syntax 

Comparison of the Abstract Parse tree with its concrete counterpart reveals the branch- 

ing structure of the two trees to be identical. It is in this sense, that the abstract tree can 

be said to identify its concrete counterpart. In the abstract syntax tree only those rules in 

the derivation of a sentence of the language that have semantic significance are reflected. 

Only those rules in the grammar are considered semantically significant for which there are 

valuation rules.
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calc-c2a 

: tokens tree = (* tree) (P . tokens) 

P 

: "ON" $ = (abst ’P "ON" §) 

5 

: E "TOTAL" "OFF" = (abst ’S E "TOTAL" "OFF") 

: E "TOTAL" $8 = (abst ’S E "TOTAL" 8$) 

E 

DE" T = (abst ’E E "+" T) 
: T = (abst ’E T) 

T 

: T "a" F = (abst ?T T "«" F) 
: F = (abst ’T F) 

F 

: "LAST" = (abst ’F "LAST") 
ncn E nyu = (abst *F nou E nyt) 

: A ee El mM E? moe E3 = (abst °F NTP El mM E? moe E3 ) 

: N = (abst ’F MN) 

El 

: E = (abst ’E1i E) 

E2 

: E = (abst °E2 E) 

E3 

: E = (abst °E2 E) 

N 

: NOD = (abst ’N ND) 

: D = (abst ’N D) 

D 

>: anyo123456789 = (abst ’D any) 

Figure 6.7: Parser for the Calculator Language 

abst 

identifier ._ = (if “tree 

[identifier . ._] 

(mk-unit ._)) 

identifier 

is identifier 

mk-unit 

[_] = _ 

Figure 6.8: Abstraction Function
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Figure 6.9: A Concrete Derivation Tree
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Figure 6.10: An Abstract Derivation Tree 
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calc-abst 

: p tree = (* tree) (P p) 

P 

: ["ON" s] = (abst ’P "ON" (S s)) 

5 

: Le "TOTAL" "OFF" ] = (abst ’S (E e) "TOTAL" "OFF") 

: Le "TOTAL" s] = (abst ’S (E e) "TOTAL" (S s)) 

E 

: Let "+" 22] = (abst ’E (E el) "+" (E e2)) 
: Cel "*" 62] = (abst ’E (E el) "*" (E e2)) 
: ["IF"! al mom a? mom e3] = (abst oz NTR (E el) mom (E e2) mom (E e3)) 

> "LAST" = (abst ’E "LAST") 
: pec" a myn] = (abst oz ne" (E e) myn) 

: on = (abst ’E (N n)) 

N 

: [n d] = (abst ’N (Nn) ( d)) 

: d = (abst ’N (D d)) 

D 

>: anyoi23456789 (abst ’D any) 

Figure 6.11: Abstract Syntax in META-LISP 

All the effective concepts p, s, e, el, e2, e3, n and d are just place-holders, defined 

to accept input at their position. For ease of comparison the BNF rules for describing the 

abstract syntax of the Calculator Language are reproduced below:



6.2. SYNTAX OF THE CALCULATOR LANGUAGE 

ON 5S 

E TOTALS 

E; TOTAL OFF 

E,+ Es 

E,* Es 

IF E,, Ee, Es 

LAST 

CE) 
N 

ND 

D 

0}/1/2|/3/4|/5/6|7/8]9 
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6.3 Semantic Algebras 

The sets that are used as value spaces in programming language semantics are called se- 

mantic domains. Semantic domains are really structured sets, but for most situations their 

structure, whether it be lattices or topologies, can be ignored. Accompanying a domain is 

a set of operations. These are functions that take arguments from the domain to produce 

results. An operation is specified in two parts. First, the operation’s functionality is given 

describing the domains from which it draws its arguments, and its codomain, which is the 

domain from which the result of the operation is drawn. For an operation f its functionality 

f:D,x Dyx-+--x D, > A says that f takes an argument from domain D, and one from 

D,,..., and one from D, to produce a result in domain A. Second, a description of the 

operation’s mapping is specified, usually in the form of equations. For operations which are 

considered semantically primitive, the defining equations are usually omitted. 

Primitive domains are sets that are fundamental to the application being considered. 

In defining the semantics of the Calculator two primitive domains are used: booleans and 

natural numbers. The semantic domains and the functionality of the operations used in the 

definition of the Calculator are given in Figure 6.12. 

I. Truth values 

Domain? € Tr=B 

Operations 

true, false: Tr 

II. Natural Numbers 

Domain n € Nat 

Operations 

zero, one, two,---: Nat 

plus,times : Nat x Nat > Nat 

equals: Nat x Nat > Tr 

Figure 6.12: Semantic Algebras 

The valuation functions given in the next section make use of the choice function and 

the operation cons : A x A* — A” for constructing lists. The choice function is the 

usual conditional expression: e; — €2[]e3, which has as its value e€, if ey = true and eg if 

€, = false. 

In the MEtTA-LispP formulation of the semantics of a language semantic algebras are 

replaced by their concrete implementation. Thus, for example, the choice function is a 

primitive of MEeTA-LisP, with the usual semantics as in LISP. For the operations on natural 

numbers, such as tzmes and sum, the built in functions of LISP, * and +, will be imported 

in the usual manner. These will operate on LISP’s representation of natural numbers. For 

more complex semantic algebras appropriate META-LIsP definitions may be used.
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6.4 Valuation Functions 

There are five valuation functions for the language of the Calculator. There is one valuation 

function corresponding to each abstract syntax domain. These are shown in Figure 6.13. 

The definition of a valuation function for an abstract syntax domain includes the description 

of its functionality and a number of rules corresponding to the alternative constructs that 

appear in the definition of the abstract syntax domain. 

P: Program — Nat* 

P[ON S] = S[S](zere) 

: Expr-sequence > Nat > Nat* 

SJE TOTAL S](m) = let m’ = ETE](m) in m’ cons S[S](m’) 
SJE TOTAL OFF](m) =E[E](™) cons nil 

: Expression + Nat > Nat 

BEE, +F2](m)=B[B;](on) plus B[E2](m) 
EQ E1 *E2](m)=E[Ei] (m) times E[E2](m) 
E[IF E,,E2,E3](m)=E[Ei](m) equals zero 4 EJE2](m) [| ETEs](™) 
E[LAST](m) = m 

E[(E)](m) =E[E](™) 
E[N](™) =N[NJ] 

: Numeral > Nat 

NIN DJ=(NIN] temes ten) plus D[D] 
N[D] = D[D] 

: Digit — Nat 

D[0]= zero 
D[1]= one 

D[9]= nine 

Figure 6.13: Valuation Functions 

Figure 6.14 shows the valuation rules in MeTaA-Lisp. In what follows each rule will be 

discussed in some detail, to build up an understanding of both formulations.



124 CHAPTER 6. DENOTATIONAL SEMANTICS IN MEtTA«-LIsp 

calc-int 

: p = (P p) 

P 

% Program -> (list Nat) 
: C"ON" s] = (Ss 0) 

5 

4 Expr-Sequence -> Nat -> (list Nat) 

: Le "TOTAL" "OFF" ] m= [(Ee m)] 

: [Le "TOTAL" s] m= (@ m~ <- (Ee m)) 

[m~@S . (8S s m~@S)] 

E 

4 Expr -> Nat -> (list Nat) 

: [el "+" 62] m= (plus (E el m) (E e2 m)) 
: [el "*" 62] m = (times (E el m) (E e2 m)) 

: ['IF" e1 "," 62 "," e3] m= (if (equals 0 (FE el m)) 
(E e2 m) 

(E e3 m)) 
: "LAST" m =m 
: pec" e myn] n= (E e m) 

in m = (N m) 

N 

4 Numeral -> Nat 
: [cn d] = (plus (times 10 (Nm)) (D d)) 

: d = (D d) 

D 

% Digit -> Nat 
>: anyoi23456789 = any 

plus 

% Nat * Nat -> Nat 
: with lisp + 

times 

% Nat * Nat -> Nat 
: with lisp * 

equals 

% Nat * Nat -> Bool 
: with lisp equal 

Figure 6.14: Denotational Semantics of the Calculator in META-LIsP 

All the effective concepts p, s, e, el, e2, e3, n and d are just place-holders, defined to 

accept input at their position.
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6.4.1 Program 

There is only one equation to describe the meaning of a Program, as there is only one rule 

for describing its abstract syntax: 

P[ON S] = S[S](zere) 

The function P maps a program to its meaning, which is a non-empty list of natural num- 

bers. This list represents the sequence of outputs displayed by the calculator during a 

session. It is obtained as the value of the Expression Sequence, [S]], as created by the 

valuation function S. The functionality of S states that it is a mapping from an expression 

sequence, [S]], and a natural number, (m), to a non-empty list of numbers. The extra 

numeric argument is used to make available the value of the most recently evaluated ex- 

pression which is stored in the calculator’s memory. The fact that the initial value of the 

memory cell is zero is also expressed by the above equation. 

The Meta-Lisp formulation of a valuation function associated with a syntax domain 

defines an interpreter for some construct of the language being defined. The formulation 

of a valuation function for a given abstract syntax domain, in META-LISP, is based on the 

MeEtTa-LisP definition of its abstract syntax. Recall the definition in META-LIsP of the 

abstract syntax domain of Programs: 

P 

: CON" s] = (S$ 3s) 

Assuming that S' will now be a mapping from the abstract syntax representation of Expres- 

sion Sequence and a Nat for the memory cell, to list of natural numbers, we can express in 

Meta-LiIsP the first valuation rule as follows: 

P 

% Program -> (list Nat) 

: C'ON" s] = (8S s 0) 

It is easy to see that this defines the same meaning as the equation for P given before. 

The intended functionality of this evaluation rule is given as a comment. 

6.4.2. Expression Sequence 

There are two rules that describe the meaning of Expression Sequences. The first describes 

the meaning of a sequence of two or more expressions. The second one applies when there 

is only one expression left to evaluate before the Calculator is turned off. The functionality 

of S indicates that the value of an Expression Sequence is calculated using the value of
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the memory cell. The first equation states that the value of a sequence of two or more 

expressions can be given by constructing a list which has as its first element the meaning of 

the first expression, [E]], and the rest of the list is obtained as the meaning of the remaining 

sequence of expressions. The corresponding actions of the calculator can be enumerated as 

follows: 

1. Evaluate [E] using cell m, producing value m'. 

2. Print out m! on the display. 

3. Place m! into the memory cell. 

4, Evaluate the rest of the sequence [[S] using the cell. 

Note how each of these four steps are represented in the semantic equation: 

1. is handled by the expression E[E](m). 

2. is handled by the expression m! cons.... 

3. and 4. are handled by the expression S[S](m’). 

The equation for S[E TOTAL S] in Mera-Lisp can be given as follows: 

: [Le "TOTAL" s] m = (@m <- Een)) 

[mes . @ 8 m@8)] 

The correspondence between the two formulations is summarised below: 

  

  

[E TOTAL S](m) [e "TOTAL" s] m 

let m! = E[E](n) in| (@ mn << Ge m)) 
m! cons S[S](m’) Im-es . (S 5 m“0S)] 

The meaning of S[E TOTAL OFF] is similar. Since [E] is the last expression to be 

evaluated, the list of subsequent outputs is just nti. The definition of S, then, is as follows: 

8 
% Expr-Sequence -> Nat -> (list Nat) 

: Ce "TOTAL" "OFF"] n= [Be n)] 
: Le "TOTAL" s] m= (@n<¢- Gem) 

[mes . @ 8 m@8)] 

Note, that the ordering of the rules is important. Reversing it would mean that OFF 

would be accepted as a Sequence, which is not correct. Alternatively, a new definition of s 

could be used: 

3 
: "OFF" = fail!
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6.4.3 Expressions 

The equations for addition, E[E,+E 2], and multiplication, EE, *E2], are straightforward. 

Their transcription to META-LISP poses no difficulties. All that is needed to be borne in 

mind is that plus and times are semantically primitive operations, which are imported 

from LISP: 

: [el "+" e2] m 

: [el "*" e2] m 

(plus (E e1 m) (E e2 m)) 
(times (E el m) (E e2 m)) 

The semantic equation for [IF E,,E2,E3] states that its meaning is given in terms of 

the conditional. The conditional is a primitive of META-LISP, with analogous semantics to 

the built in function if of LISP. The test for equality is imported from LISP. With these 

operations as semantic primitives the equation can be written in META-LISP as: 

: [YIF" e1 "," 62 "," e3] m= (Cif (equals 0 (E el m)) 
(E e2 m) 

(E e3 m)) 

The remaining three equations describe very simple interpretations: [LAST] operator 

causes a lookup of the value in the memory cell; [(E)] specifies that the value of an expression 

in parentheses is the value of the enclosed expression; and finally, the value of a Numeral is 

given by its valuation function. Collecting all these rules and the ones previously discussed 

together gives the following definition of E in META-LISP: 

E 

4 Expr -> Nat -> (list Nat) 

: [Cel "+" e2] m= (plus (E el m) (E e2 m)) 
: [Lei "#" @2] m = (times (E ei m) (E e2 m)) 

: [YIF" e1 "," 62 "," e3] m= (Cif (equals 0 (E el m)) 
(E e2 m) 

(E e3 m)) 
: CYLAST'] m= m 
: pec" e myn] n= (E e m) 

:n m = (N n) 

6.4.4 Numerals 

All that remains is to discuss how numerals are mapped into natural numbers. Recall the 

original equations: 

N: Numeral > Nat 

NIN DJ=(NIN] temes ten) plus D[D] 
N[D] = D[D] 

The first equation for N can be understood as saying that, if N is a numeral which denotes 

the number, « = N[NJ], and D is a digit which denotes a number y = D[D],then N with
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that digit D appended to the right of it denotes the number obtained by multiplying x by 

ten and adding y to it. The second equation states simply that the meaning of a numeral 

comprising a single digit is given in terms of the meaning of that digit. 

Transcribing these rules into META-LIsP is straightforward: 

N 

4 Numeral -> Nat 

: [cn d] = (plus (times 10 (Nm)) (D d)) 

: d = (D d) 

D 

% Digit -> Nat 
>: anyoi23456789 = any 

It is instructive to determine the meaning of the keypad sequence 1 2 3 using these 

evaluation rules: 

N[1 2 3] = (N[1 2] times ten) plus D[3] 

= (((N[1] times ten) plus D[2]) times ten) plus D[3] 

= (((D[1] times ten) plus D[2]) times ten) plus D[3] 

= (((one times ten) plus two) times ten) plus three 

= one hundred and twenty three 

The corresponding trace of the META-LISP program is shown in Figure 6.15. In addition, 

Figure 6.16 shows a detailed trace of the interpretation of the the example session with the 

calculator. 

6.5 Discussion 

This chapter has illustrated the methods that can be used for developing denotational style 

interpreters for a formal language using META-LIsP. To summarise, the main steps involved 

are as follows: 

1. Define the Abstract Syntax of the language 

e Construct a reader and a lexical analyser for the language 

e Construct a Parser for the language which produces a list structure representation 

of the abstract syntax of the language 

e Construct a parser for the abstract syntax of the language



6.5. DISCUSSION 129 

O>N : (((1 2) 3)) 

1>n: ((1 2) 3) 
<in: (1 2) = (1 2) 
1>d: (3) 

<l1d:3 2:3 

1> MN: ((1 2)) 
2>n: (1 2) 

<2n:3d1e=t1 

2> d: (2) 

<2d:2= 2 

2>N: (1) 

3> d: (1) 

<3d:t1#=i1 

3> D: (1) 

<3D: (1) = 1 

<2N: (1) =1 

2> times : (10 1) 

<2 times : (10 1) = 10 

2>D: (2) 

<2D: (2) =2 

2> plus : (10 2) 
<2 plus : (10 2) = 12 

<1 N: ((1 2)) = 12 
1> times : (10 12) 

<1 times : (10 12) = 120 

1>D: (3) 

<1D: (3) =3 

1> plus : (120 3) 
<1 plus : (120 3) 

<ON : (((1 2) 3)) Mo
ll
 

e
e
 

Figure 6.15: Trace of Interpreting Numerals 

2. Construct or import concrete implementations of the semantic domains and algebras 

to be used in the specification of the mapping of syntactic constructs of the language 

into their denotations. 

3. Formulate the Evaluation Rules specifying the semantics of the language based on the 

parser for the abstract syntax of the language. 

4, Experiment with the interpreter thus obtained, both as the means of refining the 

specification and of developing a more thorough understanding of the workings of the 

language thus defined. 

The experiment of writing denotational style interpreters in META-LIsP, described in 

this chapter and the following chapter, has been instructive on several accounts. Although 

experimenting with executable specification cannot be a substitute for clear thought, it is 

apparent that a machine readable and executable language definition can greatly assist in 

‘debugging’ language specifications.
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1>P: CC°ON" ccc (4 tan (1 2)) nyt) Nyt 2) "TOTAL" 

(1 Non "LAST") "TOTAL" CC°IF" ("LAST" Non 1) mon 0 mon (2 Non 4)) "TOTAL" "OFF"))))) 

92> GS: ccccne (4 Non (1 2)) myn) Nyt 2) "TOTAL" (1 tan "LAST") "TOTAL" 

CCUIF" ("LAST" tan 1) mon 0 non (2 Non 4)) "TOTAL" "QOFF"))) 0) 

3> E: cccre (4 Non (1 2)) myn) Nyt 2) 0) 

4> E: ccc (4 Non (1 2)) myn) 0) 

B> E: ((4 "+" (1 2)) 0) 

6> E: (4 0) 
7> N: (4) 
<7 N: (4) =4 

<6E: (4) =4 

6> E: ((1 2) 0) 
7> N : ((1 2)) 
8> N: (1) 
<8N: (1) =1 

<7 Ni: (C1 2)) = 12 
<6E: ((1 2)) = 12 
<BE: ((4 "+" (1 2)) 0) = 16 

<4 EE: ccc (4 Non (1 2)) myn) 0) = 16 

4>E: (2 0) 
5> N : (2) 
<6 WN: (2) = 2 

<4E: (2) = 2 
<3 E: cccre (4 Non (1 2)) myn) Nyt 2) 0) = 32 

<3 5 : (<- m~@S) = 32 
3> 3: (((1 Non "LAST") "TOTAL" CCUIF" ("LAST" Non 1) non 0 mon (2 tan 4)) "TOTAL" "QOFF")) 32) 

4>E: ((1 "+" "LAST") 32) 
5> E: (1 32) 
6> N: (1) 
<6N: (1) = 1 

<6 E: (1) =1 

5> E: ("LAST" 32) 
<5 E: ("LAST" 32) = 32 
<4E: ((1 "+" "LAST") 32) = 33 
<4$ : (<- m@S) = 33 
4> SS: CCCUIF" ("LAST" tan 1) mon 0 non (2 Non 4)) "TOTAL" "OFF") 33) 

5B> E: CCUIF" ("LAST" tan 1) mon 0 non (2 Non 4)) 33) 

6> E: (('LAST" "+" 1) 33) 

7> E: ('LAST" 33) 

<7 E: ("LAST" 33) = 33 

7> E : (1 33) 

8> N: (1) 
<8N: (1) =1 

<7 E: (1) =1 

<6 E: (("LAST" "+" 1) 33) = 34 

6> E: ((2 "+" 4) 33) 

7> E : (2 33) 

8> N: (2) 
<8N : (2) = 2 

<7 E: (2) = 2 

7> E : (4 33) 

8> N: (4) 
<8N : (4) =4 

<7 E: (4) =4 

<6 E: ((2 "+" 4) 33) =6 
<RhE: CCUIF" ("LAST" tan 1) mon 0 non (2 Non 4)) 33) =6 

<4 S$: CCCUIF" ("LAST" tan 1) mon 0 non (2 Non 4)) "TOTAL" "OFF") 33) 

= (6) 
<3 3: (((1 Non "LAST") "TOTAL" CCUIF" ("LAST" Non 1) non 0 mon (2 tan 4)) "TOTAL" "QOFF")) 32) 

= (33 6) 
<2? 9°: ccccne (4 Non (1 2)) myn) Nyt 2) "TOTAL" 

ca Non "LAST") "TOTAL" CC°IF" ("LAST" tan 1) mon 0 non (2 Non 4)) "TOTAL" "QOFF"))) 

0) 
= (32 33 6) 

<1 P : (C’ON" 
cccre (4 Non (1 

ca Non "LAST") 

2)) myn) Nyt 2) "TOTAL" 

"TOTAL" CCUIF" ("LAST" Non 1) non 0 mon (2 tan 4)) "TOTAL" "OFF"))))) 

= (32 33 6) 

Figure 6.16: Trace of Interpreting Example Session
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However, animating the rules cannot, in itself, resolve questions relating to the func- 

tionality of the rules used in the specification for the semantics. At best inconsistencies 

can be indicated. Or, looking at it the other way, specifying the intended functionality of 

an evaluation rule can help to get the formulation of the rule itself right. Ideally, there 

should be a machine provable link between the form that evaluation rules take and their 

prescribed functionality. At the moment, however, information concerning the functionality 

of the semantic mappings cannot be incorporated into the META-LISP specification. Clearly 

to do so would require the development of some kind of type discipline or type inference 

scheme for META-Lisp. The role of such type discipline, in the context of writing denota- 

tional interpreters will be analogous to the type checker of Wand’s Semantic Prototyping 

System. [Wan84]. Developing a type discipline for MrtTa-Lisp is the subject of future 

research. Making the task of writing denotational style interpreters less error-prone is one 

of the main motivations for such research. Experience, so far, in writing denotational style 

interpreters in META-LIsP indicates not only that a type discipline would be beneficial, but 

that it may be possible to develop a decidable one, at least for the class of programs that 

are structured to meet the requirements of developing denotational style interpreters.
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Chapter 7 

Meta-circular Definition of 

META-LISP 

An interpreter or evaluator for a language is a procedure that, when applied to an expression 

of the language, performs the actions required to evaluate that expression. An interpreter 

that is written in the same language that it evaluates is said to be meta-circular [ASS85][295]. 

This chapter presents a denotational style interpreter for META-LISP written in META-LISP. 

The first section of the chapter discusses the appropriateness and adequacy of meta-circular 

definitions, in general, and the use of META-LISP as its own meta-language, in particular. It 

is hoped that the previous chapters have enabled the reader to acquire a reading knowledge 

of META-LIsP so that its meta-circular definition will be understandable. Moreover, that 

the study of this definition can, in fact, improve one’s understanding of the language. 

The previous chapter have introduced the format of denotational language definitions. 

It has also illustrated the use of META-LISP in developing denotational style interpreters. 

The main steps of providing such a language definition have been identified as follows: 

1. Construct a reader and lexical analyser for the language 

No
 . Specify the Abstract Syntax of the language 

Ow
 . Specify the semantic domains and operations 

4. Using the definition of the abstract syntax of the language specify the evaluation rules 

The organisation of this Chapter reflects the sequence of these steps. The specification 

of the syntax of META-LISP is the subject of Section 2. Its aim is to develop a machine 

readable description of the abstract syntax of META-LISP. Section 3 discusses the semantic 

domains and operations that are used in the formulation of valuation rules. The semantics 

133
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of MeTa-LiIspP is then formulated in Sections 4 and 5 in terms of valuation functions. Section 

4 deals largely with the underlying language definitional formalism of META-LIsP. Section 

5 presents the semantics of the applicative language of the semantic actions. The chapter 

concludes with a discussion of the lessons learned from writing a meta-circular interpreter 

for MeTa-LiIsP. 

7.1 Meta-Circular Language Definitions 

McCarthy’s definition of LISP in terms of the universal function, eval, formulated in LISP, 

was the first example of a meta-circular definition of a programming language. This section 

looks at some of the arguments for, and against, the adequacy of meta-circular definitions. 

It also reflects on the status of the meta-circular definition of META-LisP presented in this 

chapter. 

7.1.1 For Meta-circular Definitions 

John Allen, in the Anatomy of LISP argues strongly in favour of the appropriateness of a 

meta-circular definition of the operational semantics of programming languages. Firstly, 

he points out, that in defining the operational semantics of a programming language, “real- 

istically, the choice is where to stop, not whether to stop.” [AII78][163]. In the case of LISP, 

he argues that LISP and its data structures are sufficiently simple to render self-description 

satisfactory. There are, as Allen points out, compelling reasons for deciding on direct circu- 

larity. To understand a meta-circular definition one need only to understand one language, 

the specification language being the same as the one that it specifies. Understanding the 

workings of a language then boils down to understanding a single program. Meta-circular 

definition of programming languages have the added advantage of reducing the task of initial 

implementation of the language to the task of hand-coding the meta-circular interpreter.” 

Bootstrapping (see 183) can then be used to modify and extend the language by simply 

modifying a single high level program. 

lor the pragmatics or procedural semantics of a programming language concerns itself with the process of 
interpretation of constructs of a language. It is usually contrasted with mathematicalor declarative seman- 

tics which concerns itself with the relation between constructs of the language and the abstract mathematical 

objects which they denote 
71 is interesting to note that the original definition of LISP, in the form of a meta-circular interpreter, 

was put forward purely as the means of defining and illustrating the capabilities of the language as an 
alternative to Turing machines in the context of the theory of computation. It was only later that S. R. 
Russell noticed that the meta-circular description of LISP can serve as an interpreter for it, which only 
needed to be hand-coded to obtain a programming language with an interpreter. [Wex81][179]



7.1. META-CIRCULAR LANGUAGE DEFINITIONS 135 

In the The Structure and Interpretation of Computer Programs Abelson and Sussman 

point out, that since evaluation is a process, and LISP is used as a tool for describing pro- 

cesses, it is appropriate to describe the evaluation process of LISP using LISP. [ASS85][295]. 

In his book On understanding Z, Spivey presents the formal semantics of the Z notation 

which itself is written using Z as a meta-language. The spirit of Spivey’s main argument, in 

support of using Z as its own meta-language, is similar to the previous argument for the use 

of LISP to explicate the process of evaluation in LISP. As Z is put forward as a language to 

write and reason about formal specifications, the purpose of giving a mathematical model 

to help us to understand Z specifications and to reason about them, can be served well 

by a semantics expressed in Z. Spivey also points out that for the design and specification 

of software tools to assist in the process of writing and refining software tools for Z, it is 

appropriate that the formal definition of the specification language is already written in a 

notation designed for expressing software specifications. In addition, writing the semantic 

definition in Z also provides a useful example of the flexibility of Z as a framework for 

developing mathematical theories. [Spi88][9-10] 

7.1.2. Against Meta-circularity 

The most familiar objection against of meta-circular definitions is, that if one does not un- 

derstand the language being defined, then looking at a meta-circular definition of it will not 

help. It is indeed the case that, for a meta-circular definition to be meaningful, an indepen- 

dent understanding is required of at least one program written in the language purportedly 

defined by it. The need for developing such an understanding is very similar to the need 

of developing an understanding of, say the language LAMBDA, that is defined and used 

by Stoy in developing the theory and technique of “standard” denotational semantics. It is 

tempting to suggest, that many of the difficulties that Stoy had discussed, with reference to 

meta-circular definitions, if taken literally, can be seen to befall any foundational enterprise. 

In other words, in defining the semantics of a language, we have to assume the knowledge 

of at least one, sufficiently rich language. 

Stoy calls into doubt whether a meta-circular definition can be thought of as defining 

anything at all.[Sto77][181-182] He acknowledges that if one had a partial, independent 

understanding of a language, examination of a meta-circular definition of it can help to 

improve this understanding. He then goes on to suggest that the semantics of the language 

can be thought of as a “fixed point” of the meta-circular interpreter, and warns that it may 

not be unique. Moreover, he states that the “minimal fixed point of the interpreter will be 

the language in which the value of every expression is undefined: so that the interpreter
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cannot really be thought of as defining anything at all” [Sto77][182]. 

The objection against meta-circular definitions, that they can, or are very likely to be 

ambiguous, if care is not taken, is well founded. For example. Henderson [Hen80][114] 

discusses two alternative formulations for the interpretation of the conditional (IF e1 e€2 

€3). Only one of them will assign the property that only one arm of the conditional is 

evaluated, independently of whether the language, in which the meta-circular interpreter 

is written, has that property. Similar problems related to assumptions about parameter 

passing mechanism, (whether it be call by value, or call by name) are discussed by Reynolds 

[Rey72]. Clearly, care must be taken to make explicit those assumptions about the defining 

language that are carried over to the defined language. These assumptions include the 

meanings assigned to the primitive operations of the defining language. The fact that such 

care needs to be exercised, however, does not, in my view, invalidate the use of meta-circular 

definitions. 

Stoy’s objections to meta-circular definitions stems from foundational concerns. For the 

purpose of developing appropriate mathematical foundations, these concerns are crucial. 

The point of developing meta-circular definitions is not, however, to address foundational 

issues, but to develop a model of the semantics of a language, which although it cannot 

be said to be self-standing, (hardly any theory can ever be) can, nevertheless, enhance our 

understanding of a language. This purpose is served very well in the case of LISP, or Z for 

that matter. It is my hope that it will be judged to be the case for META-LISP as well. 

7.1.38 META-LISP as its own meta-language 

META-LISP is a meta-language to begin with. Le., it is a language specifically designed 

for the purpose of defining both the syntax and the semantics of formal languages. From 

this point of view, it is incidental, that it was designed with a view to write programs as 

language processors for their input data language. 

From the standpoint of semantic definitions, META-LISP can be used to specify the 

semantics of a language, in the form of a definitional interpreter, (as demonstrated in the 

previous Chapter). It can also be used to specify the translational semantics of a language by 

specifying a translation of it into another language, which, for the purpose of the definition 

of the semantics, can be regarded as a semantically primitive language. Both forms of 

describing the semantics of a language in META-LISP can be carried out in the denotational 

style. That is to say, in a form in which the meaning of composite phrases of the defined 

language are given in terms of the meanings of its components. 

Formulating a denotational language specification in META-LISP, whether it be in the
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form of a definitional interpreter, or a ‘definitional compiler’ has many of the advantages 

usually associated with standard denotational definitions. According to Stoy, formal se- 

mantic descriptions have, at least three, well identifiable kinds of benefits: 

The first is that such definitions can help to give sufficiently precise description for 

implemeniors of the language to construct a correct compiler. This purpose have been 

served very well in the implementation of MeTa-LIsP, as the availability of the meta-circular 

definition helped to clarify many intricate issues of the semantics of the language. The meta- 

circular definition is not put forward, as a “pedagogic device”, 3 but it is being proposed 

here as the standard of implementation (i.e. how things skeuld work). By developing a 

partial evaluator for META-LIsP it should be possible to derive a provably correct compiler 

for Mera-Lisp from its denotational style definition. For further discussion of this issue 

see the section on Future Work in the concluding Chapter. 

Another important benefit of a formal definition of the semantics of a programming 

language is that it can be used by programmers to make rigorous statements about the 

behaviour of the programs they write. As things stand, at the present moment, reasoning 

about MeTa-LisP programs, be they language definitions or ‘just’ programs, can only be 

informal. Informality, does not, however, exclude rigour. In fact the very structure of 

Mera- Lisp program encourages the routine use of informal structural induction arguments. 

Much of the future work envisaged for the further development of the language addresses 

the objectives of making such arguments more formal, as well as providing machine support. 

for reasoning about MeTa-LisP programs. The planned development of a type inference 

scheme for META-LIsP will be the basis for this. 

The third, and according to Stoy, probably the most important expected benefit of 

formal semantic definitions is that they can guide language designers “towards the design 

of better (cleaner) programming languages, with simpler formal descriptions. And the 

advantage of that will be that the programs which we concoct by the usual informal methods 

will be more probably correct, because we will less likely have forgotten about the crucial 

little exception to some general rule that applies in our particular case”. The extent to 

which the design of MeTa-Lisp has benefited from its, denotational style, meta-circular 

definition can even be said to have surpassed the benefits that could have been gained from 

the development of a “standard” denotational semantics for it. 

The problem with “standard” denotational definitions, as Gougen and Meseguer have 

“The reader is warned that the definitions of apply and eval given above are pedagogical devices and 
are not the same functions as those built into the LISP programming system. Appendix B contains the 
computer implemented version of these functions and should be used to decide questions about how things 

really work. [MAE*65, 14]
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‘commonly run to thousands of lines of hard-to-digest higher pointed out, is that they ‘ 

order semantic equations, and are almost certainly wrong in detail, since they have never 

been mechanically tested.” [GM86, 300] The sheer complexity and the number of cases and 

“crucial little details” that need to be considered makes the need for mechanical testing 

paramount. This need could, of course have been served, not only by a meta-circular 

interpreter, but by, say, developing a “denotational semantics interpreter” first, as it has 

been done, for example, by Nicholson and Foo. [NF89, 665] They have developed and 

tested a denotational semantics for a core subset of Prolog, with small examples, using a 

denotational semantics interpreter, written in Prolog. Given the explicit meta-linguistic 

capabilities of META-LIsp, however, there did not seem to be much point in writing a 

separate denotational semantics interpreter. Instead, the same objective has been equally 

well served by adhering to an appropriate style of writing language definitions in META- 

LISP, as in the previous and the present chapter.
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7.2 The Syntax of META-LISP 

The distinguishing feature of META-LISP programs is that the set of valid input that they 

are to accept is defined explicitly as a language. The output of a META-LISP program 

is specified as translation(s) of the input language of the program. These translations are 

specified by attaching semantic actions to each rule of the underlying grammar, that defines 

the set of valid inputs to the program. The fundamental functional units of a META-LISP 

program are known as effective concepts or translation procedures. These correspond to the 

non-terminals of the underlying grammar. The term effective concept is used to emphasise 

their role they play in explicating the conceptual structure of both the inputs to the program 

and the way corresponding output is to be computed. 

A MeEtTA-LISP program consists of a series of definitions for effective concepts. These 

definitions consist of the name of an effective concept and a series of rules, terminated by 

an empty line. The abstract syntax of META-LISP is shown in Figures 7.1 and 7.2. Figure 

7.1 describes the abstract syntax of the grammatical means of composition of META-LISP 

programs. Figure 7.2 describes the abstract syntax of the semantic actions. The following 

meta-syntactic conventions are being used: 

1. non-terminals are shown in italic 

2. the symbol ::= marks the beginning of grammar rules 

3. the symbol | marks an additional alternative 

4, keywords are represented in typewriter font 

5. lexical classes are enclosed in angle-brackets, e.g. (, ) 

Lexical classes are assumed to denote their corresponding lexical class in LISP. 

7.2.1 Lexical Analysis 

Lexical matters will largely be ignored in the present discussion. The lexical analyser 

performs the usual task of translating a stream of characters into tokens of the language. It 

involves identifying keywords and the words of the language. Its basic design is similar to 

the lexical analyser for the Symbolic differentiation program. There is only one new feature 

of its design that needs special mention. This feature concerns the treatment of strings in 

the input. Since keywords of the language are tokenised in the form of strings, there is a 

need to be able to tell them apart from strings in the input.
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Program 

Ee 

Rules 

Als 

Synt 

Pseudo 

Pred 

Objects 

Fr 

Module 

Compos 

Comp 

Denot 

Left 

Start 
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Ec Rules Program 

(identifier) 

Alts 
Left 

: Synt = Sem Alts 
Synt ? Sem Alts 

: Synt Alts 

  

Pseudo 

Compos 

is Pred 
any Objects 
with lisp Fn 
with Module Ec 

(identifier) 

{object) Objects 

{indentifier) 

(keyword) 

Comp Compos 

[ Compos ] 

+ (object) 
(string) 
(keyword) 

Start Rec 

Alis 

Alis 

(Definitions) 

(Concept Name) 

(Alternatives) 
(Left Recursion) 

(Committed Alternative) 
(Backtracking) 
(Default Action) 

(Pseudo Rule) 
(Composition) 

(Predication) 
(Enumeration) 
(LISP Primitive) 
(Importing) 

(LISP Predicate) 

(LISP Objects) 

(LISP Function) 

(LISP Keyword) 

(Composition) 

Prefix) 
Suffix) 
Empty) 
End) 
Denotation) 
Constituent Ec) 

i) 
‘Nested Composition) 

( 
¢ 
( 
( 
( 
( 
(ai 
( 

(LISP Object) 
(String) 
(Keyword) 

(Left. Recursion) 

(Starting Alternatives) 

(Iterated Alternatives) 

Figure 7.1: Abstract Syntax I
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Sem = Sterms (Semantic Action) 

Sterms n= Sterm Sterms (Semantic Terms) 

Sterm n= { Sterms } (Sequencing) 
| (@ Id <- Sterm ) (Synthesised Attribute) 
| (@ Id ) (Synthesised Attribute) 
| (* Id <- Sterm ) (Inherited Attribute) 
| (* Id ) (Inherited Attribute) 
| (if Bool Sti St2 ) (If Then Else) 
| ( Sterm Els ) (Invocation) 
| [ Els ] (Construction) 
| < Ec > (Procedure Designation) 
| Denot (Denotation) 
| (number) (Number) 
| Id (Reference) 
| fail! (Failure) 

Id n= (identifier) (Identifier) 

Bool n= Sterm (Test) 

Sti n= Sterm (Consequent 1) 

St2 n= Sterm (Consequent 2) 

Els n= . Sterm Els (Splicing / Appending) 
| Sterm Els (Cons-ing) 

Figure 7.2: Abstract Syntax II 

The strategy adopted to distinguish tokens and strings is to represent string in the input 

as lists formed of the keyword : string and the string that has been read. 

7.2.2. Mapping from Concrete to Abstract Syntax 

The program for mapping from concrete to abstract syntax takes the following input: the 

name of an effective concept, the representation of the rules, in terms of tokens, that make 

up its definition, and a boolean value to determine whether a parse tree or the internal 

representation of the abstract syntax is to be produced. Figure 7.3 shows the top-level 

elaboration of the program. 

The mapping from concrete to abstract syntax is straightforward except for the treat- 

ment of left recursive rules. A rule for an effective concept X is said to be left recursive
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mci-c2a 

: ec tokens _ (* tree <- _) (Defn ec tokens) 

Defn 

: ec tokens (“ ec) (Rules . tokens) 

Rules 

: Comments Left ? (if recs@Left 

(abst ’Left 

(abst ’Start (Alts . start@Left)) 

(abst ’Rec (Alts . recs@Left))) 

fail!) 
: Comments Alts 

Comments 

: [:comment rest] Comments 

: <> 

il 
c
t
 

Figure 7.3: Top Level Elaboration of Concrete to Abstract Mapping 

if its first component is X. left recursive rules are identifier by the effective concept Left, 

shown in Figure 7.4. 

Left 

: rulel rest (if (eq “ec compl@rulel) 

{ (Left . rest) 
(@ recs <- [":" . rest-of-rule@rulei . recs@Left]) } 

{ (Left . rest) 
(@ start <- [. rulel . start@Left]) }) 

: § = (@ recs <- []) (@ start <- []) 

rulel 

: ":" compl rest-of-rule = (@ compl) 
(@ rest-of-rule) 

[":" compl . rest-of-rule] 

rest-of-rule 

: item rest-of-rule [item . rest-of-rule] 

: <> 

item 

: $ = fail! 

20 = fail! 

Figure 7.4: Concrete Syntax of Left Recursive Rules 

Left examines each rule in turn and decides whether it is left recursive or not. It returns 

two values, in the form of synthesised attributes, which correspond to the left recursive and 

the non-left recursive rules found. Rules that are classified as non-left recursive are simply 

combined to form the start-up rules of the definition. left recursive rules are returned as 

new alternatives which are obtained by removing their first (left recursive) component. If it 

is found that the rules involve left recursion, then the start-up rules and the left recursive
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tules are translated separately as alternatives by Alés. If there are no left recursive rules, 

then the input is translated simply as a sequence of alternatives. Note the use of semantic 

backtracking (marked by the keyword ?) in the definition of Rules, to accomplish this 

re-examination of the input in the absence of left recursion. Closer examination reveals, 

that Lefé will separate left recursive rules from non-left recursive ones, but it does not check 

whether they are consecutive or not. This should be improved upon in future version of the 

program. 

expr 
: term 
: expr + term = [+ expr term] 

CCl" (term $) $) 
C's" (+ (term $)) "=" C("[" (+ (expr (term $))) "J]") $) $))) 

  

  

  
Figure 7.5: Structure of a left recursive Definition
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Figure 7.5 shows a left recursive definition, the internal representation of its abstract 

syntax, and its parse tree. Contrast it with Figure 7.6, that shows a right-recursive (i.e. 

non-left recursive) variant of ezpr. 

expr 
: term + expr = [+ term expr] 
: term 

(expr Cre 
(term ( (expr #))) 

CC'L" G (term (expr $))) "]") $) 
Ch" (term $) $))) 

  

  

  

Figure 7.6: Structure of a Right-recursive Definition 

The program for mapping alternatives into their abstract syntax representation is shown 

in Figure 7.7. Figure 7.8 shows the same mapping for semantic actions. Note the use of $ 

as the means of representing the end of a sequence. 

The remaining definition for mei-c2a are collected in Figure 7.9.
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Alts 

"2" Synt "=" Sem Alts = (abst ’Alts ":" Synt "=" Sem Alts) 
"2" Synt "?" Sem Alts = (abst ’Alts ":" Synt "?" Sem Alts) 

: ":" Synt Alts = (abst ’Alts ":" Synt Alts) 
: $ = (abst ’Alts $) 

Synt 

: Pseudo = (abst ’Synt Pseudo) 
: Compos = (abst ’Synt Compos) 

Pseudo 

"is" Pred = (abst ’Pseudo "is" Pred) 
"any" Objects = (abst ’Pseudo "any" Objects) 

"with" "lisp" Fn = (abst ’Pseudo "with" "lisp" Fn) 

"with" Module Ec = (abst ’Pseudo "with" Module Ec) 

Compos 
: Comp Compos = (abst ’Compos Comp Compos) 
: <> = (abst ’Compos $) 

Comp 
: Denot = (abst ’Comp Denot) 

non = (abst >Comp mony 

moon = (abst ’Comp "._") 
"ep" = (abst ’Comp "<>") 

: ngu = (abst >Comp non) 

: Ec = (abst ’Comp Ec) 
"CL" Compos "]" = (abst ’Comp "[" Compos "]") 

Denot 

"2" Object = (abst ’Denot "’" Object) 
: String = (abst ’Denot String) 

: keywordp = (abst ’Denot keywordp) 

String 
[:string stringp] = (abst String [:string stringp]) 

Pred 

is identifier = (abst ’Pred is) 

Objects 
: objects = (abst ’Objects objects) 

Fn 

is identifier = (abst ’Fn is) 

Module 
is keywordp = (abst ’Module is) 

Ec 

is identifier = (abst ’Ec is) 

Object 

Figure 7.7: Concrete Syntax of Alternatives
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Sem 

Sterms = (abst ’Sem Sterms) 

Sterms 

Sterm Sterms = (abst ’Sterms Sterm Sterms) 

Sterm = (abst ’Sterms Sterm $) 

Sterm 

: "{" Sterms "}" = (abst ’Sterm "{" Sterms "}") 
nou "Ne" Tq nyu = (abst *Sterm ne" "oO" Td nyt) 

nou "@" Td "<=" Sterm nyu = (abst *Sterm ne" "OO" Td "<=" Starm nyt) 

nou naw Tq nyu = (abst *Sterm ne" nau Td nyt) 

nou ua Tq "<=" Sterm nyu = (abst *Sterm ne" ne Tq "<={" Starm nyt) 

"C" "GF" Bool Sti St2 ")" = (abst 'Sterm "(" "if" Bool Sti St2 ")") 

"(" Sterm Els ")" = (abst ’Sterm "(" Sterm Els ")") 
np Els myn = (abst *Sterm npn Els myn) 

: Nel Ec nym = (abst *Sterm Nel Ec Nom) 

: Denot = (abst ’Sterm Denot) 

Id = (abst ’Sterm Id) 

: Number = (abst ’Sterm Number) 

: Failure = (abst ’Sterm Failure) 

Id 

is identifier = (abst ’Id_ is) 

Els 

: "." Sterm Els = (abst ’Els "." Sterm Els) 

"o" Sterm = (abst ’Els "." Sterm) 

Sterm Els = (abst ’Els Sterm Els) 

Sterm = (abst ’Els Sterm) 

<> = (abst ’Els $) 

Number 

is numberp = (abst ’Number is) 

Failure 

"faili" = (abst ’Failure "fail!") 

Bool 

Sterm = (abst ’Bool Sterm) 

sti 

Sterm = (abst ’Sti Sterm) 

$t2 

Sterm = (abst ’Sti Sterm) 

Figure 7.8: Concrete Syntax of Semantic Actions
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objects 
: object objects 
2 <> 

[object . objects] 

object 
: any Mont Non " ou 

: § 

fail! 
fail! 

comp1 _ 
ec : is identifier 

eq : with lisp eq 
rest : 

tokens - 
stringp : is stringp 

Figure 7.9: Miscellanous Definition in mci-c2a 

The definition of abst is the same as in Figure 6.8 

7.2.3 The Abstract Syntax of META-LISP 

Figures 7.10 and 7.11 show the definition of the abstract syntax of META-LISP written in 

Meta-Lisp. As in the previous chapter, the definition of the abstract syntax in META-LISP 

specifies the list structure representation of the constructs of the language. The principle 

is the same, i.e. composite structures are represented as lists formed of their components. 

The definition can alternatively used to generate abstract parse trees. 

The following effective concepts all have definitions of the form X : _  ,i.e. they are 

all defined as place-holders: alts, bool, c1, c2, comp, compos, els, fn, id, object, 

objects, pred, rec, sem, start, sterm, sterms, structure, synt, tree. The 

following effective concepts are defined using the pseudo rule of the form X : is X, 

i.e. they import the following functions from LISP: identifier, keywordp, module, 

stringp.
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mci-abs 

: ec structure tree 

Defn 

: ec Rules 

Rules 

: Left 

: Alts 

Left 

[start rec] 

Start 

: Alts 

Rec 

: Alts 

Alts 
che" 

che" 

che" 

$ 

synt "=" sem alts] 
synt "?" sem alts] 

synt alts] 

Synt 

: Pseudo 
: Compos 

Pseudo 
. ['is" pred] 

["is!" pred] 

["any" objects] 
["'with" "lisp" fn] 

['with" module ec] 

Compos 
[comp compos] 

’$ 

Comp 
: Denot 

"i "i 

Nest 

: ngu 

: Ec 

: String 

: Keyword 
c'c compos ny] 

Denot 
pres object] 

: String 

: Keyword 

String 
[:string stringp] 

Keyword 

is keyworp 

Ec 

is identifier 
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(* tree) (Defn ec structure) 

Rules 

(abst 

(abst 

(abst 

= (abst 

= (abst 

= (abst 

(abst 

(abst 

(abst 

(abst 

= (abst 

= (abst 

= (abst 

(abst 

(abst 

(abst 

(abst 

(abst 

= (abst 

= (abst 

= (abst 

= (abst 

= (abst 

(abst 

(abst 

(abst 

= (abst 

(abst 

(abst 

(abst 

(abst 

’Left (Start start) (Rec rec)) 

Start Alts) 

’Rec Alts) 

’Alts ":" (Synt synt) "=" (Sem sem) (Alts alts)) 
"Alts ":" (Synt synt) "?" (Sem sem) (Alts alts)) 

’Alts ":" (Synt synt) (Alts alts)) 
’Alts $) 

’Synt Pseudo) 
’Synt Compos) 

’Pseudo "is" pred) 
’Pseudo "is!" pred) 

’Pseudo "any" objects) 
’Pseudo "with" "lisp" fn) 

’Pseudo "with" module ec) 

’Compos (Comp comp) (Compos compos) ) 

’Compos $) 

’Comp Denot) 
’Comp mony 

’Comp nooNy 

’Comp Ney) 

’Comp non) 

’Comp Ec) 
’Comp String) 

’Comp Keyword) 
Comp "L" (Compos compos) "]") 

’Denot "’" object) 
’Denot String) 

’Denot Keyword) 

String stringp) 

’Keyword is) 

"Ec is) 

Figure 7.10: Abstract Syntax I in META-LIsP
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Sem 

: sterms 

Sterms 

[sterm sterms] 
»$ = 

Sterm 

: C'{" sterms "}"] = (abst 
pec! non id myn] = (abst 

pec! non id Neo sterm myn] = (abst 

pec! nan id myn] = (abst 

pec! nan id Neo sterm myn] = (abst 

CoC" "if" bool cl c2 ")"] = (abst 

["(" sterm els ")"] = (abst 
c'c" els ny] = (abst 

pre ec non] = (abst 

: Denot = (abst 
Id = (abst 

: Number = (abst 
: Failure = (abst 

Id 

is identifier = (abst 

Number 

is numberp = (abst 

Failure 

"fail!" = (abst 

Els 

["." sterm els] = (abst 

[sterm els] = (abst 
$ = (abst 
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(abst ’Sem (Sterms sterms)) 

(abst ’Sterms (Sterm sterm) (Sterms sterms) ) 

(abst ’Sterm $) 

*Sterm "{" (Sterms sterms) "}") 
>Sterm ncn nor id myn) 

’Sterm "(" "@" id "<-" (Sterm sterm) ")") 
>Sterm ncn moan id myn) 

>Sterm ncn man id Neon (Sterm sterm) myn) 

’Sterm "(" "if" bool ci c2 ")") 

’Sterm "(" (Sterm sterm) (Els els) ")") 

*Sterm "[" (Els els) "J]") 
>Sterm Nel ec Nom) 

’Sterm Denot) 

’Sterm Id) 

’Sterm Number) 

’Sterm Failure) 

°Td is) 

*’Number is) 

’Failure "fail!") 

"Fle " . " 

"Els $) 

(Sterm sterm) (Els els)) 

"Els (Sterm sterm) (Els els)) 

Figure 7.11: Abstract Syntax I in MreTA-LIsP
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7.3 Semantic Algebras 

7.3.1 Semantic Domains 

The following notions will be considered as elementary for the purposes of the present 

exposition: (keywords), (identifier), (atom) and (fail). These are all fundamental constructs 

of LISP and other programming 

fail! = 

val — 

input = 

ec — 

id = 

mod — 

env = 

loc = 

glob = 

lat = 

sat = 

init-env = 

7.3.2 Semantic Functions 

languages. 

fail | succ (fail!) 
(atom) | fail! | (list val) 
val 
id 
(identifier) 
(keyword) 

(list (list id value) ) 

env 

env 

env 

env 

(list (list) ) 

Hierarchy of fails 

Denotable Value 

Input 

Name of effective concept 

Identifier 

Module Name 

Environment 

Local Bindings 

Global Bindings 

Bindings for Inherited Attributes 

Bindings for Synthesised Attributes 

Initial Environment 

The MEtTA-LISP implementations of semantic functions for handling environments is shown 

in Figure 7.12
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lookup 
*% id -> iat -> loc -> sat -> val 

id iat loc sat 
= (if (bound? key (merge-envs iat loc sat)) val@bound? id) 

merge-envs 

% list -> list 
: with lisp append 

a-list 

% env 

bound? 

% id -> env -> (list id value) | () 

: boundh 

= (if boundh { (@ val <- (first (rest boundh))) t } []) 

boundh 

identifier a-list 

= (assoc identifier a-list) 

assoc 
: with lisp assoc 

add-b 

% Add new Binding of ec to val to environment 

: key val env 
= [[key val] . env] 

add-bs 

: bindings env 
= (list2set [. bindings . env]) 

Figure 7.12: Semantic functions 
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7.4 The Semantics of META-LIsP: Part I 

The notion corresponding to program execution in META-LISP is the invocation of an ef- 

fective concept with certain input. What is submitted to META-LIsP is the name of an 

effective concept followed by a sequence of objects forming the input. The invocation of an 

effective concept with certain input can be thought of as a query for determining whether 

some prefix of the given input is a sentence of the input language of the program. The 

invocation of an effective concept can succeed or it can fail. If the query has been successful 

then an ‘answer’ to the query is produced. This takes the form of a value, or principal 

translation for the invocation, and bindings for the possible synthesised attributes of the of 

the effective concept invoked. The value of an invocation, and its possible attributes rep- 

resents translation(s) of the matched prefix of the input. An example of a query presented 

to the META-LISP system is shown below: 

| ?= (split [a b c d e] alphalessp) 

The response is shown below: 

| (abcde) 

| alphalessp 

pl@split = (ac e) 

p2@split = (b d) 
split = ((a bc) (b d)) 

The example represents the invocation of the effective concept, split, with the input list 

(Ca b c d e) alphalessp). As can be seen from the definition of split shown in Figure 

7.18, split has two synthesised attributes p1@split and p2@split. The answer to the query 

split 

: [split.seq] [ (@ pi <- pi@split.seq) 

(@ p2 <- p2@split.seq) ] 

split.seq 

: § = (@ pl <- []) 
(@ p2 <- []) 

: el $ = (@ pi <- [e1]) 
(@ p2 <- []) 

: el e2 split.seq = (@ pl <- [el . pl@split.seq]) 

(@ p2 <- [e2 . p2@split.seq]) 
el: _ 

e2: 

Figure 7.13: Definition of split
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shows the bindings created for these attributes and lastly, it shows the output value. It 

also shows, above the horizontal line, the matched portion of the input (a b c d e). The 

unmatched portion of the input is shown under the horizontal line: alphalessp. 

Effective concepts can be thought of as list structure matching procedures, that attempt 

to match some prefix of the input while producing translation(s) of them. The process of 

attempting to match some prefix of the input while producing translation(s) of it is referred 

to as the expansion of an effective concept with certain input. This terminology is intended 

to emphasise the continuity between the treatment of non-terminals of a grammar in TDPL, 

as in Section 2.2.2, as string matching procedures, and the concept of effective concepts in 

META-LISP. 

Effective concepts can also be viewed as pure functions. Let X be an effective concept. 

Its functionality can be given as 

X:input -> <suf, env, val> 

where suf is the unmatched portion of the input left behind after the expansion, env is a 

set of bindings for the synthesised attributes of the expanded concept, and val is its value 

or principal translation of the input. The value of an effective concept is used as the means 

of determining whether a given expansion was successful. The notation < ... > is used 

to represent tuples. In many cases, we are only interested in the synthesised attributes if 

any, and the value of an effective concept. In these cases, it makes sense to talk about the 

functionality of a given concept in terms of the type of its synthesised attributes if any, and 

its value. As an example, consider the informal typing of split.seg. Its functionality can be 

given informally as: 

split.sq: input -> <p1, p2, list> 

where pi and p2 are also lists. The full functionality would be: 

split.sq: input -> <suf, <pi, p2>, list> 

When effective concepts are viewed as pure functions the informal typing is indicated. 

Whenever explicit type information for the set of valid input can be inferred from the form 

of a META-LisP definition, the informal type of the input will also be indicated, as it has 

been done throughout the previous Chapter. 

7.4.1 Top-Level Elaboration of the Meta-circular Interpreter 

The meta-circular interpreter for META-LISP, presented in this chapter, describes the ac- 

tions required to produce an answer to a META-LISP query, i.e. the process of expansion
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of an effective concept with certain input. The interpreter has been successfully applied 

to interpret itself interpreting another program (including itself) with some input. Self- 

application has been made possible by indicating in a call to the meta-circular interpreter 

the number of levels of meta-interpretation involved. See Section 7.6.1 for details of why it 

was necessary, and how does it work. In discussing the top-level elaboration of the meta- 

circular interpreter it is sufficient to take a note of the fact that information about the 

number of levels of meta-interpretation that are involved needs to be made available. This 

is accomplished in the form of the inherited attribute “level. 

The input to the meta-circular interpreter comprises the following: the name of the 

effective concept being invoked, the name of the module to which it belongs, an integer 

argument which signifies the level of meta-interpretation, and the input with which the 

named effective concept has been invoked. Figure 7.14 shows the top level elaboration of 

the interpreter. 

mci 

4 ec -> mod -> level -> input -> <suf, env, val> 

: ec mod level input 

= (~ level) 
(Xec ec mod input (init-env)) 

(@ suf <- suf@Xec) 
(@ env <- env@Xec) 

(@ val <- val@Xec) 

Kec 

4 ec -> mod -> input -> glob -> <suf, env, val> 

: ec mod input glob 

= (* ec) 
(* mod) 
(Rules (get-def ec mod) input glob (init-env) (init-facs)) 

(@ suf <- suf@Rules) 
(@ env <- env@Rules) 

(@ val <- val@Rules) 

Rules 

4% rules -> input -> glob -> loc -> facs -> <suf, env, val> 

: Alts 

= (@ suf <- suf@Alts) (@ env <- env@Alts) (@ val <- val@Alts) 
: Left 

= (0 suf <- suf@Left) (@ env <- env@Left) (@ val <- val@Left) 

Figure 7.14: Top Level Elaboration of the Meta-circular Interpreter 

The workhorse of the interpreter is Xec which embodies the notion of the expansion of 

an effective concept of a given module with some input, in a global environment, initially 

empty, that holds bindings for inherited attributes. Xec has three synthesised attributes: 

suf, env, and val. These convey information concerning the unmatched portion, or suffix,
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that the expansion of a concept left unmatched, an environment which holds the bindings for 

synthesised attributes of the expanded concept, and the value of the expansion, respectively. 

The values associated with these attributes are assigned to the identically named attributes 

of mei. Considered as a function, mei has the following, informal functionality: 

ec -> mod -> level -> input -> <suf, env, val> 

The co-domain of mei is adequate in that it contains all the information necessary for 

answering a MeTa-LIsP query. Note that the codomain of Xee is the same. In fact, most 

rules will have the same co-domain. Copying the values of synthesised attributes will also 

be a prominent feature of the definitions. 4 

The expansion of an effective concept belonging to a given module, with an input in 

some global environment is carried out as follows: 

1. The name of the given concept is made available as an inherited attribute: “ec. 

2. Similarly the name of the module to which it belongs is recorded as “mod. 

3. The rules making up the definition of the concept are retrieved. 

4. These are then interpreted as Rules. 

Meta-Lisp Rules can be either left recursive or are formed of alternatives without left 

recursive rules. The expansion of alternatives is the subject of the next subsection. 

7.4.2 Alternatives 

Alternatives in MeTa-LisP, as their name suggest, allow the description of alternative forms 

of input and their corresponding translation. The form that these alternatives can take can 

also influence the way further alternatives are considered. Figure 7.15 shows the definition 

of alternatives. 

The interpretation of alternatives makes reference to a second environment, called loc 

which is used to hold the bindings created in the course of interpreting individual rules. 

It also involves the maintenance of records of expansions that have been completed at any 

point. These records are used as a mechanism of left-factoring (see Section 2.2.1). Note that 

left-factoring is achieved not by changing the grammar, but by changing the way grammar 

tules are expanded. As such, this ‘optimisation’ forms an integral part of the semantics of 

Meta-Lisp. 

“Tt is arguable, whether there should be rules to govern the copying of attribute values implicitly, in place 
of the present requirement of making them explicit
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Alts 

4% alts -> input -> glob -> loc -> facs -> <suf, env, val> 

["':" synt "=" sem alts] input glob loc facs 

= (if (success? (Synt synt input glob loc facs) “level) 
{ (Sem sem glob env@Synt val@Synt (init-env) ) 

(@ suf <- suf@Synt) 
(@ env <- sat@Sem) 

(@ val <- val@Sem) } 
{ (Alts alts input glob loc facs@Synt) 

(@ suf <- suf@Alts) 
(@ env <- env@Alts) 

(@ val <- val@Alts) }) 
["':" synt "?" sem alts] input glob loc facs 

= (if (success? (Synt synt input glob loc facs) “level) 
{ (Sem sem glob env@Synt val@Synt (init-env) ) 

(if (success? val@Sem “level) 
{ (@ suf <- suf@Synt) (@ env <- env@Sem) (@ val <- val@Sem) } 

{ (Alts alts input glob loc facs@Synt) 
(@ suf <- suf@Alts) 

(@ env <- env@Alts) 

(@ val <- val@Alts) }) } 
{ (Alts alts input glob loc facs@Synt) 

(@ suf <- suf@Alts) 
(@ env <- env@Alts) 

(@ val <- val@Alts) }) 
[":" synt alts] input glob loc facs 

= (if (success? (Synt synt input glob loc facs) “level) 
{ (@ suf <- suf@Synt) (@ env <- (init-env)) (@ val <- val@Synt) } 

{ (Alts alts input glob loc facs@Synt) 
(@ suf <- suf@Alts) 

(@ env <- env@Alts) 
(@ val <- val@Alts) }) 

’$ input glob loc facs 
= (@ suf <- input) (@ env <- (init-env)) (@ val <- (mk-fail+ “level)) 

Figure 7.15: Alternatives 

7.4.2.1 Alternatives with Default Action 

[":" synt alts] 

The simplest form of alternatives is one which consists of a syntax specification and further 

alternatives. Its interpretation is as follows: 

1. Expand the syntax specification with the given input. 

2. If this was successful then return the unmatched portion of the input, the bindings and the 

value produced by the expansion of the syntax description. 

3. If this failed, then the remaining alternatives are tried. 

Note that the factors produced, in the course of the (ultimately unsuccessful) expansion 

of the syntax description, are passed on to enable left-factoring to be carried out in the
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course of the expansion of the remaining alternatives. 

Note also, that deciding whether a given value represents success (i.e. not failure) 

requires the number of levels of meta-interpretation to be known. This is because the 

representation of failure itself depends on the level of meta-interpretation. 

7.4.2.2 Backtracking Alternatives 

[":" synt "?" sem alts] 

1. The syntax description part of an alternative imposes conditions on the input. If these con- 
ditions are not satisfied by the input, the expansion of an alternative fails, which results in 
backtracking and an attempt to reexamine the input using the remaining alternatives. 

2. If the expansion of the syntax description in a rule has been successful then the associated 
semantic action is evaluated. 

3. If the semantic action evaluates to failure then the remaining alternatives are tried as if the 
syntax description had failed. 

4, If the semantic action evaluates to any other value then the items returned are 

© the unmatched portion of the input produced by the expansion of the syntax specification 
« the bindings for synthesised attributes produced by the evaluation of the semantic action 
e and the value produced by the evaluation of the semantic action 

7.4.2.3 Committed Alternatives 

[":" synt "=" sem alts] 

The difference between the treatment of Backtracking Alternatives and Committed Alter- 

natives ® is that step 3 is omitted and step 4 is carried out regardless of the value of the 

semantic action. That is to say, even if the value of the semantic action happens to denote 

failure, this value will be returned, and no further alternatives are tried for the currently 

expanded concept. Backtracking, will however be caused by this at the level of the caller 

of the currently expanded concept. 

7.4.2.4 Exhausting Alternatives 

If all alternatives have been tried and all failed, then failure is returned. This amounts to 

returning the input as the suffix, an empty environment as bindings for attributes, and the 

right level representation of failure. 

This concludes the present discussion of the expansion of alternatives. 

® The idea of ‘commitment’ in the consideration of alternatives was first suggested by Mark Tarver.
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7.4.3 Syntax Rules 

There are two kinds of syntax rulesin META-LIsP. The first comprises a non empty sequence 

of syntax components, forming a composition. In its form the second kind of syntax rule 

looks like a composition, except that its first element is one of the keywords is, any or 

with. The presence of these keywords signify that these rules are not to be treated as a 

composition, instead they have some special interpretation. Syntax rules of this kind are 

known as pseudo rules. Figure 7.16 shows clearly the above classification of syntax rules. 

Synt 

4% synt -> input -> glob -> loc -> facs -> <suf, env, facs, val> 

: Pseudo 

= (@ suf <- suf@Pseudo) 
(@ env <- env@Pseudo) 

(@ facs <- facs@Pseudo) 
(@ val <- val@Pseudo) 

: Compos 
= (@ suf <- suf@Compos) 

(@ env <- env@Compos) 
(@ facs <- facs@Compos) 

(@ val <- val@Compos) 

Figure 7.16: Syntax Rules 

7.4.4 Pseudo Rules 

The rationale for pseudo rules is that they extend the range of structural constraints that 

can be imposed on the input by ordinary syntax rules. Specifically, they can be used to 

e designate LISP predicates to be used as the means of specifying particular properties 

of the input, 

e specify as an admissible first element of the input any one of a collection of objects, 

e specify LISP functions to operate on the input instead of effective concepts, 

e import effective concepts from other modules. 

The interpretation of these rules is given in Figure 7.17. 

7.4.4.1 Predication 

L"is" pred]
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Pseudo 
: ["is" pred] input glob loc facs 
= (if (apply pred [(first input)]) 

{ (@ suf <- (est input)) 
(@ env <- (add-b "is" (first input) (init-env))) 
(@ facs) 
(@ val <- (first input)) } 

{ (@ suf < input) 
(@ env <- (init-env)) 
(@ facs) 
(@ val <- (mk-fail+ “level)) }) 

: [Yany" objects] input glob loc facs 
= (if (member (first input) objects) 

{ (@ suf <- (est input)) 
@ env <- (add-b "any" (first input) (init-env))) 
(@ facs) 
(@ val <- (first input)) } 

{ (@ suf < input) 
(@ env <- (init-env)) 
(@ facs) 
(@ val <- (mk-fail+ “level)) }) 

: ["with" "lisp" fn] input glob loc facs 
= (@ suf < O) 

(@ env <- (init-env)) 
(@ facs) 
(@ val <- (apply fn input)) 

: ["with" module ec] input glob loc facs 
= (Kec ec module input glob) 

(@ suf <- suf@Xec) 
(@ env <- envOXec) 
(@ facs) 
(@ val <- val@Xec) 

Figure 7.17: Pseudo Rules 

Predication allows the use of a named LISP predicate © to determine whether the first 

element of the input is to be deemed grammatical. The interpretation of this rules is as 

follows: 

1. Apply (in the sense of LISP) the named LISP predicate to the first element of the input. 

2. If the result of the application is a non-nil value then, return 

« the input list without its first element, as suffix 
anew environment in which the keyword is is bound to the first element of the input 

© the factors unchanged 
© the first element of the input as the value of the expansion 

3. otherwise report failure, by returning 

© the entire input, as suffix 
© the empty environment 

6, LISP predicate is a function which may return nil as its value



160 CHAPTER 7. META-CIRCULAR DEFINITION OF MEtTa-LIspP 

e the original factors unchanged 

e failure as the value of the expansion 

7.4.4.2 Enumeration 

L"any" objects] 

Enumeration provides the means of specifying any one of a number of given objects as 

admissible first element of the input. 

1. Test if the first element of the input is included in the list of objects given in the rule 

2. If the first element is one of these objects then return 

e the input list without its first element, as suffix 

e a new environment in which the keyword any is bound to the first element of the input 

e the factors unchanged 

e the first element of the input as the value of the expansion 

3. otherwise report failure, by returning 

e the entire input 

e the empty environment 

e the original factors unchanged 

e failure as the value of the expansion 

7.4.4.3 LISP Primitives 

["with" "lisp" fn] 

This pseudo rule is special in that it does not impose any conditions on the input. It opens 

a back door to allow LISP functions to be incorporated into META-LISP programs. 

1. Apply the LISP function named in the rule to the entire input, and return 

e the empty suffix (i.e. pretend that the entire input has been matched) 

e anew environment in which the keyword with is bound to the first element of the input 

e the factors unchanged 

e the result of the application of the named function to the input as the value of the 

expansion
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7.4.4.4 Importing 

The name-space of META-LISP is partitioned into modules. Every effective concept at the 

point of definition is made to belong to some module. The last pseudo rule provides the 

means of importing the functionality of a named concept from an other module. 

["with" module ec] 

1. Expand the effective concept named in the rule from the given module on the input, and 

return 

e the suffix of the expansion 

e the bindings created by the expansion 

e the factors unchanged 

e the result of the expansion 

7.4.5 Composition 

The structure of the input is specified in terms of a non-empty sequence of syntax com- 

ponents forming a composition. The process of expansion of a composition provides the 

means of establishing whether some prefix of the input is grammatical. The expansion of 

a composition in META-LIsP plays the role of a syntax-directed parameter passing mecha- 

nism. Figure 7.18 shows that this process is recursive. It also shows that the terminating 

case is reached when the the last component is to be expanded next. 

Compos 
4% compos -> input -> glob -> loc -> facs -> <suf, env, facs, val> 

: Ccomp ’$] input glob loc facs 
= (if (success? (Comp comp input glob facs) “level) 

{ (@ suf <- suf@Comp) 
(@ env <- (add-bs env@Comp loc)) 

(@ facs <- facsComp) 
(@ val <- val@Comp) } 

{ (@ facs <- facs@Comp) (@ val <- (mk-fail+ “level)) }) 
: [comp compos] input glob loc facs 

= (if (success? (Comp comp input glob facs) “level) 
{ (Compos compos suf@Comp glob (add-bs env@Comp loc) facs@Comp) 

(@ suf <- suf@Compos) 
(@ env <- env@Compos) 

(@ facs <- facs@Compos) 
(@ val <- val@Compos) } 

{ (@ facs <- facs@Comp) (@ val <- (mk-fail+ “level)) }) 

Figure 7.18: Composition
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7.4.5.1 Composition: General Case 

[comp compos] 

The expansion of a composition comprising more then one syntax components proceeds as 

follows: 

1. The first component in the composition is expanded 

2. If this was successful, then 

e Expand the remaining components in the composition with 

— the suffix of the successful expansion of the first component as the input. 

— the global bindings unchanged 

— local environment extended to include the bindings created in the course of the 

successful expansion of the first component 

— new, possibly extended set of factors produced in the course of the expansion of the 

first component 

e then return the suffix, the extended local environment, the factors and the value of the 

expansion of the remaining components 

3. If the expansion of the first component was not successful, then return 

e the factors returned by the unsuccessful expansion of the first component (this will 

include a record of this failure) 

e failure as the value of the expansion of the composition 

7.4.5.2 Composition: Terminating Case 

[comp ’$] 

The expansion of a composition comprising a single syntax component proceeds as follows: 

1. Expand the given component with the given input 

2. If this was successful, then return the suffix, the extended local environment, the factors and 

the value of the expansion of the component as suffix etc. of the composition 

3. if the expansion of the single component was not successful, then return 

e the factors returned by the unsuccessful expansion of the component 

e failure as the value of the expansion of the composition
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7.4.6 Syntax Component 

Componenis can be characterised as one of two kinds: elementary and nen-elementary 

components. Elementary components are so called because their action on the input can 

be defined without reference to other effective concepts. Non-elementary components, in 

contrast depend for their definition on other effective concepts. Figure 7.19 shows the def- 

inition of components. Elementary components offer grammatical means which go beyond 

the matching of terminal symbols. They offer extra language definitional capabilities which 

have been found invaluable in language oriented programming. The inclusion of nested 

structures into the grammatical formalism has been motivated also by their usefulness and 

convenience in writing language oriented programs. 

7.4.6.1 Prefix 

wa 

The limiting case of syntax-directed parameter passing is pattern matching. This feature 

provides the mechanism for unconditional acceptance of the first element of the input. In 

effect, its role can be likened to that of pattern variables. Note that if the input is empty 

then the empty list is returned. 

1. Always succeeds, and returns 

¢ the rest of the input as suffix 
¢ anew environment in which the keyword "_" is bound to the first element of the input 

© the factors unchanged 
© the first element of the input as the value of the expansion 

7.4.6.2 Suffix 

This form of syntax component provides the means of passing the entire input as a param- 
eter. 

1. Always succeeds, and returns 

¢ the empty input as suffix 

anew environment in which the keyword "._" is bound to the entire input 
¢ the factors unchanged 
© the entire input as the value of the expansion
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7.4.6.3 Empty 

Nest 

This feature of the grammatical formalism of META-LISP corresponds to the empty pro- 
duction of standard grammatical formalism. 

1. Always succeeds, and returns 

e the entire input as suffix 

e an empty, new environment 

e the factors unchanged 

e the empty list as its value 

7.4.6.4 End of Input Test 

ng 

This feature of the grammatical formalism of META-LISP corresponds to the use of endmark 

in parsing. 

1. Tests if the input is empty 

2. If it is, then returns 

e the empty input as suffix 

e anew, empty environment 

e the factors unchanged 

e the empty list as its value
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Comp 

4 comp -> input -> glob -> facs -> <suf, env, facs, val> 

: "_" input glob facs 

= (@ suf <- (if input (rest input) (J) 
(@ env <- (add-b "_" (if input (first input) []) (init-env))) 

(@ facs) 
(@ val <- (first input) ) 

: "._" input glob facs 
= (@ suf <- []) 

(@ env <- (add-b "._" input (init-env))) 
(@ facs) 

(@ val <- input) 
: "<>" input glob facs 

(@ suf <- input) (@ env <- (init-store)) (@ facs) (@ val <- []) 

: "$" input glob facs 
(if (null? input) 

{ (@ suf <- []) (@ env <- (init-env)) (@ facs) (@ val <- []) } 
{ (@ suf <- []) (@ env <- (init-env)) (@ facs) (@ val <- (mk-fail+ “level)) }) 

: Denot input glob facs 
= (if (equal Denot (first input) ) 

{ (@ suf <- (rest input)) (@ env <- (init-env)) (@ facs) (@ val <- (first input)) } 
{ (@ suf <- input) (@ env <- (init-env)) (@ facs) (@ val <- (mk-fail+ “level)) }) 

: Ec input glob facs 
= (if (present? (get-factor Ec facs) input) 

{ (@ suf <- suf@present?) 
(@ env <- (add-b Ec val@present? env@present?) ) 

(®@ facs) 
(@ val <- val@present?) } 

{ (Xec Ec “mod input glob) 
(@ suf <- suf@Xec) 

(@ env <- (add-b Ec val@Xec env@Xec) ) 
(@ facs <- (add-factor (mk-factor Ec suf@Xec env@Xec val@Xec (first input)) facs)) 

(@ val <- val@Xec) }) 

["C" °$ "]"] input glob facs 
= (if (null? (first input)) 

{ (@ suf <- (rest input)) (@ env <- (init-env)) (@ facs) (@ val <- (first input)) } 

{ (@ suf <- input) (@ env <- (init-env)) (@ facs) (@ val <- (mk-fail+ “level)) }) 
["[" compos "]"] input glob facs 

= (if (atom? (first input)) 
{ (@ suf <- input) (@ env <- (init-env)) (@ facs) (@ val <- (mk-fail+ “level)) } 

(if (success? (Compos compos (first input) glob (init-env) facs) “level) 
(if (null? suf@Compos) 

{ (@ suf <- (rest input) ) 
(@ env <- env@Compos) 

(@ facs <- facs@Compos) 
(@ val <- val@Compos) } 

{ (@ suf <- input) 
(@ env <- (init-env)) 

(@ facs <- facs@Compos) 
(@ val <- (mk-fail+ “level)) }) 

{ (@ suf <- 1) 
(@ env <- (init-env)) 

(@ facs <- facs@Compos) 
(@ val <- (mk-fail+ “level)) })) 

Figure 7.19: Syntax Component
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7.4.6.5 Denotation 

The concept of terminal productions is made more machine oriented in META-LIsP by the 

introduction of the notion of denotation which covers not only the matching of arbitrary 

objects, but strings and keywords as denoting themselves. The forms that denotations can 

take is defined in Figure 7.20. The interpretation of denotations is the same regardless of 

their specific form: 

Denot 
: ['?" object] 

= object 
: String 

: Keyword 

String 
: [:string stringp] 

= stringp 

Keyword 

: is keywordp 

Ec 

: identifier 

Figure 7.20: Denotation 

1. Test if the first element of the input is the same as the given denotation. 

2. If it is the case, then return 

e the input list without its first element, as suffix 

e anew, empty environment 

the factors unchanged 

e the first element of the input as the value of the expansion 

3. If the first element of the input is not the same as the given denotation, then return 

the entire input, as suffix 

the empty environment 

the original factors unchanged 

failure as the value of the expansion 

7.4.6.6 Constituent Effective Concept 

Ec 

The real definitional power of composition derives from the fact that it can have effective 

concepts as components. The invocation of constituent effective concepts in a composition
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in a rule for a given effective concept clearly involves a recursive call to the workhouse of 

the meta-circular interpreter Xec. It is at this point that a record of the expansion of a 

concept is created and used. The expansion of a constituent concept proceeds as follows: 

1. Test if the given concept has been expanded earlier with the same input. 

2. If it is the case then return 

the recorded suffix 

extend the bindings for synthesised attributes retrieved from the record of the previous 

expansion of the concept with a binding for the name of the concept to its recorded value 

the factors unchanged 

the value of the recorded expansion 

3. If there is no record of a previous expansion of the given concept with the same input as the 

current input, then 

expand the concept with the current input, and 

return the suffix of the expansion 

extend the bindings for synthesised attributes produced by the expansion with a binding 

for the given concept to the value of the expansion 

add to the record of previous expansions a new record comprising all the necessary 

information about the expansion of the concept. The information recorded include, the 

suffix, the bindings, the value returned by the expansion. In addition to these the first 

element of the input is also recorded. 

finally, the value of the recorded expansion is returned 

The maintenance of appropriate records of previous expansions is a form of memoisation. 

Recoring information about the input is equivalent to recording the arguments to a function 

when it is memoised. It is an open question whether it is sufficient to record only the first 

element of the input for this purpose. It may be that more is needed. Or even, perhaps that 

the entire input needs to be examined. The latter, in some circumstances, may introduce 

intolerable overheads. This requires further investigation. 

7.4.6.7 Nested Composition 

pee compos | 

MetTa-LisP allows the grammatical description of arbitrary nested list structures. 

1. If the first element of the input is not a list, then report failure in the usual manner 

2. If the first element of the input was indeed a list, then 

expand the composition enclosed in square brackets with the first element of the input 

as input 

if the expansion of the composition was successful,then
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— if the expansion exhausted its input, then 

* return as the suffix of the expansion of the nested composition the original 

input less its first element, since, as the test shows, the first element has been 

matched completely. 

* return the bindings, the factors and the value produced by the expansion of the 

nested composition in the usual manner 

— if the expansion did not exhaust its input, then return 

* the entire original input as suffix 

* the empty environment 

* the factors returned by the expansion of the composition 

* failure as the value of the expansion of nested composition 

e if the expansion of the composition failed, then report failure, but pass on the factors 

produced by the expansion as well 

7.4.7 Left Recursion 

The form of left recursion provided in META-LISP is limited to direct left recursion. It 

is useful both as the means of specifying iteration as well as the definition of language 

constructs that involve left associativity. Figure 7.21 shows the meta-circular definition of 

this construct. 

Left 

[start rec] input glob loc facs 
= (Start start input glob loc facs) 

(if (success? value@Start “level) 
{ (Rec rec suf@Start glob (add-b “ec val@Start env@Start) val@Start) 

(@ suf <- suf@Rec) 
(@ env <- env@Rec) 

(@ val <- val@Rec) } 
{ (@ suf <- input) (@ env <- loc) (@ val <- (mk-fail+ “level)) }) 

Start 

: Alts 

= (0 suf <- suf@Alts) (@ env <- env@Alts) (@ val <- val@Alts) 

Rec 

: alts input glob loc val 
= (Alts alts input glob loc (init-facs) ) 

(if (success? val@Alts “level) 

{ (Rec alts suf@Alts glob (add-b “ec val@Alts env@Alts) val@Alts) 
(@ suf <- suf@Rec) 

(@ env <- env@Rec) 
(@ val <- val@Rec) } 

{ (@ suf <- input) (@ env <- loc) (@ val) }) 

Figure 7.21: Left Recursion 

The abstract syntax of left recursive rules was designed to facilitate their interpretation. 

The distinction drawn between left recursive and non-left recursive rules is crucial. Recall
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that the abstract syntax representation of left recursive alternatives omits the left recursive 

calls from the rules (see Section 7.2.2). The non-left recursive alternatives, are used to 

produce a start-up value for the left recursive effective concept. For this reason they are 

referred to as start-up rules. The suitably transformed left recursive alternatives are then 

expanded repeatedly in an environment in which there are bindings for the left recursive 

concept, — initially using the values produced by the expansion of the startup rules — to the 

value of the previous iteration. 

1. The start-up rules are expanded as alternatives 

2. If this expansion was successful, then 

e the recursive alternatives are expanded 

— with input that was left unmatched by the expansion of the startup rules 

— in a local environment that consists of the bindings produced by the expansion of 

the start-up rules, extended to include the value of the start-up rules bound to the 

name of left recursive concept being expanded 

— the value of the expansion of the start-up rules is also passed as a parameter 

e the suffix, the environment and the value produced by the expansion of recursive alter- 

natives are then returned 

3. if the expansion of the start-up rules failed, then report failure 

7.4.7.1 Left Recursive Alternatives 

1. The alternatives are expanded 

2. If the expansion was successful then the expansion of left recursive alternatives is repeated 

with 

e input left unmatched by the expansion of the alternatives 

e in a local environment in which name of the left recursive concept being expanded is 

bound to the value of the alternatives 

e the value of the of the expansion of the alternatives 

3. if the expansion of the alternatives fails, then return 

e the input as the unmatched prefix 

e the local environment, which holds the bindings created in the previous successful ex- 

pansion of the left recursive alternatives 

e and the value of the previous expansion
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7.5 The Semantics of META-LIsP: Part II 

This Section presents the semantics of the language of Semantic Actions. An important 

property of the language of semantic actions is that the value of an expression of the language 

is determined solely in terms of its constituent parts. That is to say, it is an applicative 

language [Hen80, 7]. 

7.5.1 Semantic Actions 

Figure 7.22 show the top-level elaboration of the interpreter for semantic actions. It maps 

semantic actions into three values: bindings for inherited attributes and synthesised at- 

tributes and the value of the evaluation of the semantic action. The valuation of semantic 

actions takes place in the context of environments that contain bindings created in the 

course of the expansion of the grammar rule with which the semantic action is associated, 

inherited and synthesised attributes. The latter two can also be added to in the course of 

the evaluation. Semantic actions comprise a non-empty sequence of semantic terms. The 

meaning of semantic actions is therefore given in terms of the meaning of these terms. 

Sem 

4% sem -> iat -> loc -> val -> sat -> <iat, sat, val> 

: sterms iat loc val sat 

= (Sterms sterms iat loc val sat) 

(@ iat <- iat@Sterms) 

(@ sat <- sat@Sterms) 

(@ val <- val@Sterms) 

Figure 7.22: Semantic Action 

7.5.2 Semantic Terms 

Semantic terms are evaluated in a sequence. The bindings created by the evaluation of one 

semantic term can be referenced in the course of the evaluation of subsequent terms. 

7.5.3. Semantic Terms: General Case 

[sterm sterms] 

1. Evaluate the given semantic term 

2. Evaluate the remining semantic terms in the context of new environments returned by the 

evaluation of the semantic term 

3. Return the environments and the value resulting from the evaluation of semantic terms.
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Sterms 

% sterms -> iat -> loc -> val -> sat -> <iat, loc, sat, val> 

°$ iat loc val sat 

= (@ iat) (@ loc) (@ sat) (@ val) 

[sterm sterms] iat loc val sat 

= (Sterm sterm iat loc val sat) 

(Sterms sterms iat@Sterm loc@Sterm val@Sterm sat@Sterm) 

(@ iat <- iat@Sterms) 

(@ loc <- loc@Sterms) 

(@ sat <- sat@Sterms) 

(@ val <- val@Sterms) 

Figure 7.23: Semantic Terms 

7.5.4 Semantic Terms: Terminating Case 

$ 

If there are no more semantic terms in the sequence then return the current values of the 

1. environments for 

e inherited attributes 

e local bindings 

e synthesised attributes 

2. end the value of the last semantic term 

7.5.5 Semantic Term 

There are four basic mechanisms used to build up semantic terms. These are 

1. sequencing 

2. attribute assignments 

3. invocation of semantic functions (effective concepts or the choice function if) 

4 . construction of list structures 

Figure 7.24 shows the appropriate evaluation rules. These will be considered, one by 

one in the following subsections. 

7.5.5.1 Sequencing 

pen asterms | 

A non-empty sequence of semantic terms enclosed in a pair of curly brackets is a semantic 

term. It is evaluated as a semantic action.
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7.5.5.2 Synthesised Attributes 

pec neg! id Neotl aterm > | 

synthesised attributes can be assigned the value of a semantic term. 

1. The semantic term given in the attribute assignment is evaluated 

2. Bindings returned by the evaluation of the semantic term are returned unchanged with the 

exception of bindings for synthesised attributes 

3. anew binding is added to the set of bindings for synthesised attributes which binds the value 

of the semantic term to an identifier constructed out of the given attribute name and the 

name of the effective concept being expanded 

7.5.5.3 Default Synthesised Attributes 

pec neg! id > | 

The above form of synthesised attribute assignment is a shorthand for the equivalent se- 

mantic term 

pec neg! id <- id > | 

which can then be interpreted as a synthesised attribution. 

7.5.5.4 Inherited Attributes 

pec iti id Neotl aterm > | 

Inherited attributes can be assigned the value of a semantic term. 

1. The semantic term given in the attribute assignment is evaluated 

2. Bindings returned by the evaluation of the semantic term are returned unchanged with the 

exception of bindings for inherited attributes 

3. a new binding is added to the set of bindings for inherited attributes which binds the value 

of the semantic term to an identifier constructed out of the a caret ~ and the given attribute 

name. 

The real difference between synthesised and inherited attributes is that the latter are 

passed on as global bindings for in subsequent invocations of effective concepts, whereas 

synthesised attributes represent information flow in the opposite direction.
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7.5.5.5 Default Inherited Attributes 

pec iu id > | 

The above form of synthesised attribute assignment is a shorthand for the equivalent se- 

mantic term 

pec iti id <- id > | 

which can then be interpreted as an inherited attribution. 

7.5.5.6 Choice function 

pec nafu bool cl c2 > | 

The semantics of the choice function is the standard one. That is to say only one arm of 

the conditional will be evaluated. Care has been taken to write the evaluation rule in such a 

way that it is independent of whether META-LIsP has this property or not. What it assumes, 

however, is e left-to-right evaluation order. The trick used is to have two conditionals doing 

the job of one. 

1. The boolean term is evaluated first 

2. If it evaluates to a non-nil value then the first arm of the conditional is evaluated. 

3. [fit evaluates to nil then the first arm is not evaluated, only the second 

4 . the bindings and the value created in the course of the evaluation of one of the appropriate 

branch of the conditional is returned. 

Note that the bindings created by the evaluation of the boolean term are passed to the 

evaluation of the branches of the choice function. 

7.5.5.7 Invocation 

["C" sterm els ")"] 

The ability of invoking effective concepts in the semantic actions is the most important 

feature of MrpTa-Lisp. This feature is responsible for META-LISP’s ability to provide lin- 

guistic support for the language oriented paradigm. The way it is being defined relies on 

the left-to-right evaluation order of META-LIsP. It seems hard to avoid this. It should be 

regarded as one of the fundamental, irreducible properties of the language.
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sterms "}"] iat loc val sat 

= (Sterms sterms iat loc val sat) 

(@ 
(@ 
(@ 
(@ 

pec" 

iat <- iat@Sterms) 

loc <- loc@Sterms) 

sat <- sat@Sterms) 

val <- val@Sterms) 

"@" id "<=" sterm ")"] iat loc val sat 

= (Sterm sterm iat loc val sat) 

(@ 
(@ 
(@ 
(@ 

pec" 

iat <- iat@Sterm) 

loc <- loc@Sterm) 

sat <- (add-b (mk-sattr-name id “ec) val@Sterm sat@Sterm) ) 

val <- val@Sterm) 

"@" jd ")"] iat loc val sat 

= (Sterm ["(" "@" id "<-" id ")"] iat loc val sat) 

(@ 
(@ 
(@ 
(@ 

pec" 

iat <- iat@Sterm) 

loc <- loc@Sterm) 

sat <- sat@Sterm) 

val <- val@Sterm) 

nen id "<=" sterm ")"] iat loc val sat 

= (Sterm sterm iat loc val sat) 

(@ 
(@ 
(@ 
(@ 

pec" 

iat <- (add-b (mk-iattr-name id) val@Sterm iat@Sterm)) 

loc <- loc@Sterm) 

sat <- sat@Sterm) 

val <- val@Sterm) 

"-" jd ")"] iat loc val sat 

= (Sterm ["(" "*" id "<-" id ")"] iat loc val sat) 

(@ 
(@ 
(@ 
(@ 

pec" 

iat <- iat@Sterm) 

loc <- loc@Sterm) 

sat <- sat@Sterm) 

val <- val@Sterm) 

"if" bool ci c2")"] iat loc val sat 

= (Sterm bool iat loc val sat) 

(if val@Sterm (Sterm ci iat@Sterm locO@Sterm val@Sterm sat@Sterm) []) 

(if val@Sterm [] (Sterm c2 iat@Sterm loc@Sterm val@Sterm sat@Sterm) ) 

(@ iat <- iat@Sterm) 

(@ loc <- loc@Sterm) 

(@ sat <- sat@Sterm) 

(@ val <- val@Sterm) 

["'C" sterm els ")"] iat loc val sat 

= (Xec 

(Sterm sterm iat loc val sat) 

“mod 

(Els els iat@Sterm loc@Sterm val@Sterm sat@Sterm) 

iat@Els) 

(@ iat <- iat@Els) 

(@ loc <- (add-bs env@Xec loc@Els)) 

(@ sat <- sat@Els) 

(@ val <- val@Xec) 

C'C" els "]"] iat loc val sat 

= (Els els iat loc val sat) 

(@ iat <- iat@Els) 

(@ loc <- loc@El1s) 

(@ sat <- sat@Els) 

(@ val <- val@Els) 

["'<" ec ">"] iat loc val sat 

= (@ iat) (@ sat) (@ loc) (@ val <- ac) 

: Denot iat loc val sat 

= Denot (@ iat) (@ sat) (@ loc) (@ val <- Denot) 

Id i 
= (@ 

at loc val sat 

iat) (@ sat) (@ loc) (@ val <- (lookup Id iat loc sat)) 
: Number iat loc val sat 
= (@ iat) (@ sat) (@ loc) (@ val <- Number) 

: failure? iat loc val sat 
= (@ iat) (@ sat) (@ loc) (@ val <- (mk-fail+ “level)) 

Figure 7.24: Semantic Term
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1. The semantic term given as the function term is evaluated first. It is assumed to evaluate to 

the name of a currently defined concept belonging to the current module. Exception handling 

could be introduced in the definition of Xec if desired. 

2. The bindings created are passed on to the evaluation of the input elements. 

3. Then the concept — named by the value of the function term — is expanded in the current 

module with input computed before. 

4, Note that the inherited attributes returned by the evaluation of the input elements are passed 

as a global environment to the expansion of the name effective concept. 

Note that the interpretation of input elements, given on page 178 will give the right 

interpretation of dotted invocation, see page 56 without the need for special rules. 

7.5.5.8 List Construction 

pee els | 

In the invocation of effective concept as semantic functions, described above, the input 

elements were made to form the input list with the implicit use of list constructions. Ele- 

ments enclosed by a pair of square brackets designate list-construction. The interpretation 

of elements is given on page 178. 

7.5.5.9 Conceptual Value 

pg! ec | 

META-LISP treats effective concepts as first class objects. This feature is used to indicate 

that a return value, an identifier is taken to be the name of an effective concept belonging 

to the current module. 

7.5.5.10 Denotation 

Denot 

Denotations denote themselves. 

7.5.5.11 Identifiers 

Id
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Identifiers may have bindings in any one of the current environments. If they are not bound 

then they are assumed to denote themselves. This feature corresponds to auto-quote in 

some dialects of LISP. The semantic function lookup is used to test if a given identifier is 

bound, if it is than that binding is returned. If there is no binding the identifier itself is 

returned as a value. 

7.5.5.12 Number 

Number 

Numbers denote themselves. 

7.5.5.13 Failure 

failure? 

The treatment of failure as a semantic value is problematic. Care is needed to distinguish 

failure at the meta-level from failure at the object level. Failure as a value of a semantic 

actions needs to be distinguished from, say Sterm returning failure, because, say the input 

to be interpreted was not grammatical. 

As the means of distinguishing between object level and meta level notions of failure, a 

whole hierarchy of failures have been introduced. The need for this has become apparent in 

meta-meta-interpretation, i.e. when the interpreter was used to interpret itself interpreting 

another program, (which could itself be the interpreter interpreting another program), etc. 

The definitions used to make this scheme work are shown in Figure 7.25. The solution 

offered at the present to the problems related to failure requires further investigations. 

7.5.6 Elements 

A sequence of elements can be combined to form a list. The construction of this list allows 

splicing specified elements into the list being constructed. 

7.5.6.1 Cons-ing an Element into a List 

[sterm els] 

The basic method of constructing a list of elements is to evaluate an element and construct- 

ing a list with that element as its first element and the rest of the list formed of the values 

of the remaining elements.
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. Evaluate the element. 

. Evaluate the remaining elements in an environment which holds the bindings created in the 

course of evaluating the first element. 

. Return the bindings created in the course of evaluating the remaining elements 

. return as the value a list with the value of the first element and the list value of the remaining 

elements as its tail. 

7.5.6.2 Splicing an element into a List 

["." sterm els] 

An elment is spliced into a list of elements by appending its value to the list of the values of 

the remaining elements. 

1. 

2. 

Evaluate the element. 

Evaluate the remaining elements in an environment which holds the bindings created in the 

course of evaluating the first element. 

. Return the bindings created in the course of evaluating the remaining elements 

. return as the value a list with the value of the first element appended to the list value of the 

remaining elements. 

7.5.6.3 Elements: Terminating Case 

*$ 

The empty sequence of elements evaluates to the empty list. 

This completes the present account of the meta-circular interpreter for META-LISP. 

Figure 7.27 shows the elementary definitions that were used.
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failure? 

stringp 

= (if (equal stringp (mk-fail “level)) yes (mk-fail+ “level)) 

success? 
: with lisp success? 

mk-fail 

: with lisp mk-fail 

mk-fail+ 
: with lisp mk-failt+ 

level 

is integerp 
<> = 0 

(defun success? (result level) 

(not (failed? result (1+ level)))) 

(defun failed? (result level) 

(equal result (mk-fail level))) 

(defun mk-fail (level) 

(format nil "fail!~A" level)) 

(defun mk-fail+ (level) (mk-fail (i+ level))) 

Figure 7.25: Dealing with Failure 

Els 

4 els -> iat -> loc -> val -> sat -> <iat, loc, sat, val> 

°$ iat loc val sat 

= (@ iat) (@ loc) (@ sat) (@ val <- []) 

["." sterm els] iat loc val sat 

= (Sterm sterm iat loc val sat) 

(Els els iat@Sterm loc@Sterm val@Sterm sat@Sterm) 

(@ iat <- iat@Els) 

(@ loc <- loc@El1s) 

(@ sat <- sat@Els) 

(@ val <- (append val@Sterm val@Els) ) 
[sterm els] iat loc val sat 

= (Sterm sterm iat loc val sat) 

(Els els iat@Sterm loc@Sterm val@Sterm sat@Sterm) 

(@ iat <- iat@Els) 

(@ loc <- loc@El1s) 

(@ sat <- sat@Els) 

(@ val <- (cons val@Sterm val@Els) ) 

Figure 7.26: Semantic Elements
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add-factor : with lisp cons 

all-up-case : with lisp all-up-case 
alts : _ 

aname : _ 
anything : _ 

append : with lisp append 
apply : with lisp apply 

atom? : with lisp atom 
bindings : _ 

bool : _ 
cl: 

c2 3 _ 
comp : _ 

compos : _ 
concat : with lisp concat 

cons : with lisp cons 
ec : identifier 

els : _ 

env: _ 
equal : with lisp equal 

explode : with lisp explode 
facs : _ 

first : with lisp first 
fn: _ 

get-def : with lisp get 
get-factor : with lisp assoc 

glob: _ 
head : _ 

iat : _ 
id: _ 

identifier : is identifier 
if : with lisp if 

implode : with lisp implode 
init-env : <> 

init-facs : <> 
init-store : <> 

input : _ 
intern : with lisp intern 

Id : is identifier 

item 

: $ 
= fail! 

: anything 

key 

identifier : stringp 
list : ._ 

list2set : with lisp list2set 
loc: _ 

member : with lisp memeql 
mk-factor : list 

mk-iattr-name 

: ec = (implode (cons ’#\* (explode ec))) 

nk-sattr-name 
: aname ec 
= (if (all-up-case (append (explode aname) (explode ec))) 

(intern (concat (string aname) "©" (string ec))) 

(intern (concat (my-symbol-name aname) "@" (my-symbol-name ec))))
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mod : is keywordp 

module : is keywordp 
my-symbol-name : with lisp my-symbol-name 

null : is null 

null? 

: null 

= ft 

: <> 

object : item 

objects 

: object objects 
= [object . objects] 

: object 
= [object] 

pred : _ 

present? 
> null 

: [Lec suf env val head] input 
= (if (equal (first input) head) { (@ suf) (@ env) (@ val) (@ head) ec } (J) 

rec : _ 

rest : with lisp cdr 
sat: _ 

sem: _ 
start : 

sterm : _ 

sterms : _ 

string : with lisp string 
stringp : is stringp 

suf : _ 
synt : 

val : _ 

Figure 7.27: Elementary Definitions 

7.6 Discussion 

This section presents some of the experiments with the meta-circular interpreter carried out 

to date. It concludes with a brief discussion of some of the lessons learned. 

7.6.1 Meta-Interpreting the Meta-circular Interpreter 

One of the advantages of developing a meta-circular interpreter is that self-application pro- 

vides an extensive test of its capabilities. The programs in Chapter 6 (including the lexical 

analyser, the abstractor, and the interpreter, were successfully interpreted by the meta- 

circular interpreter. In fact, the program was run by running the meta-interpreter, running
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the meta-interpreter running the calculator program. Each level of meta-interpretation has 

increased the overall runtime by two orders of magnitude. Since three levels of interpreta- 

tion involves 100 x 100, i.e. four orders of magnitude increase in run-time only a very simple 

program have been run to illustrate meta-interpretation®. The approximate runtimes were 

0.2, 20 and 2000 seconds respectively. 

| ?= (mci mci :mci 1 (mci :mci 2 (expr :expr 3 (1 * 2 + 4)))) 

| mci :mci 1 (mci :mci 2 (expr :expr 3 (1 * 2 + 4)))) 

QO 
QO 
(+ (* 1 2) 4) 

suf @mci 

env@mci 

valO@mci 

mci = (+ (* 1 2) 4) 

7.6.2 Reflections 

Reflecting on the experience of writing a denotational style interpreter in META-LisP I 

would like to make the following observations: 

e Writing any description of the semantics of a non-trivial language is difficult. 

e working out the details in full is not only the object of the exercise but it is also the 

primary means of arriving at a satisfactory definition of the language 

e The warning given by Tofte is highly appropriate: “Hacking a machine readable lan- 

guage definition must never be seen as a substitute for thinking seriously about the 

semantics of the language.” |Tof90, page 111] 

e Writing denotational style interpreters in META-LISP clearly indicates the desirability 

of type checking. 

e The meta-circular interpreter will be the starting point for the development of a type- 

discipline for META-LISP. 

I would like to conclude this chapter by quoting Tofte’s apt admonition: 

The best one can do when writing proofs (or compilers or compiler generators, 

for that matter) is to care. Only from feeling of having been careful can some 

level of confidence emerge. [Tof90, page 111]
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Chapter 8 

Implementation 

This chapter describes the implementation of the programming language META-LISP and 

its associated programming environment. The chapter is divided into three sections. The 

first Section outlines the stages in the development of the implementation of the language. 

Section two discusses the implementation of the programming environment. Section three 

discusses directions for further development. 

8.1 Implementing METa«-LISP 

The implementation strategy that relies on the facilities provided by a language to com- 

pile itself is called bootstrapping. [ASU86, 725]. Bootstrapping is a particularly attractive 

strategy for the initial implementation of a new programming language. To begin with, 

a compiler is developed for only a subset of the intended new language. This minimal 

language is implemented with minimum sophistication in a short order. The addition of 

further constructs and capabilities can then be carried out in a piecemeal fashion, using 

bootstrapping. A further advantage of bootstrapping follows from the fact that a compiler 

for a programming language, itself is a complex program. Having to write such a program 

in its own language, can help the designer of the language to refine the facilities provided 

by the language. In addition, the compilation of a compiler written in its own language 

provides a useful benchmark for (regressive) testing of the compiler itself. 

A compiler for a programming language is characterised by three languages: the source 

language 5 that it compiles, the target language T that it generates, and the implementation 

language I that it is written in. These three languages that characterise a compiler are 

usually represented in a diagram forming a T, called a T-diagram.[Bra61| 

183



184 CHAPTER 8. IMPLEMENTATION 

  

      

      

The notation used to refer to a compiler with the three languages §,T and I is to write 

Sqr. 

Bootstrapping poses the problem: how to obtain the first compiler, to begin with. 

One possible approach is to hand-compile a compiler for a subset of the language into 

the implementation language to obtain the first compiler for the language. An alternative 

approach, the one that was adopted here, is to construct an interpreter for a subset of 

the language first, and to use that interpreter as the means of running the compiler. An 

interpreter is characterised by two languages: the language that it interprets L, and the 

language that it is implemented in I. It is represented diagrammatically as 

  

L 

      

For the above scheme to work, the interpreter itself had to be written in a language that 

is already implemented on a machine. The diagrammatical notation for representing a 

machine which executes a (machine) language is show below: 

VY 
These boxes can be composed to form description of systems involving compilers, inter- 

preters, any kinds of translators, in fact, and machines capable of executing programs in a 

given language. Placing these boxes on top of each other denotes interpretation. Placing 

them adjacent to each other horizontally denotes translation. 

In implementing MerTa-Lisp, LISP was used both as the target language of its compiler 

and the language in which the first interpreter for a subset of the language was written. + 

The subset of MeTa-Lisp, for which the first compiler was constructed, is referred to as 

MtL°. A compiler for it for was constructed as follows: 

e First, an interpreter was written in LISP for MtL°. 

1Given LISP’s reputation as the “machine language” for Artificial Intelligence, this choice is very natural. 
[Alrs, 243]
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e Then a compiler (MEL; 2pLISP) was written for this subset in itself designed to 

generate LISP code 

 acompiler for M¢L° to LISP in LISP, MtL°, 2. LISP, was finally obtained by run- 
LISP 

ning the compiler for MéL° written in itself, MiD yi oLISP, using the interpreter 

for MtL° written in LISP, ie. MEL; ;opLISP 

This process is illustrated in Figure 8.1. It shows a run of the translator Mil? ygfoLTSP 

with the definition of itself MEL® ygjoL ISP as input producing a LISP implementation of 

the translator for MtL° into LISP. 

  

MtL® — LISP MtL® — LISP 
    
  

MEL |MtL® — LISPILISP 
        
  

MEL 
  

MEL 

LIS PI 

ISP 
      

Figure 8.1: The Construction of the First Compiler 

MEL® included the following features of META-LISP: 

e top-down limited backtrack translation 

e description of nested list structures 

e lisp forms as semantic actions with the addition of the feature of invoking MétL° 

translation procedures as semantic functions 

The compiler generated by this process made the original interpreter superfluous. Al- 

though the performance of the generated code was an improvement over the interpreter, it 

was still hopelessly inefficient. The expressive power of MtZ° was also painfully restrictive 

at that point. Bootstrapping was used both as the means of improving the performance of 

the implementation as well as introducing new features into the language.
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8.1.1 Extensions 

The introduction of a set of new language features using bootstrapping involves the following 

steps: 

e write a new compiler for the extended language (MtL’) in the currently implemented 

form of the language (MtL). 

e compile it with the existing compiler to obtain an implementation of the described 

new extensions of the language 

e rewrite the new compiler in the new, extended language MtL' 

e compile it with the new compiler 

As the result of the last step a the implementation reaches a new meta-siable state, 

ie. when the compiler obtained in the last step compiles itself it produces a copy of itself. 

This also implies that the language implementation becomes independent of any previous 

compilers. This process is illustrated by Figure 8.2: 

    

Mtl’ — LISP Mtl’ > LISP 
    

MiL! > LISP|\MiL'|MtL'’ > LISPILISP 
          

MiL|MtL — LISPILISP|           
LISP       

Figure 8.2: Extending the Language 

The above process was repeated four times over the development of MeTa-LIsP to 

introduce the following features: 

1. left-recursion and left-factoring 

2. list-construction 

3. attributes 

4. ‘conceptual’ parameters and importing effective concepts from other packages
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8.1.2 Optimisation 

Improving the performance of the generated LISP code involved the following steps: 

e write a new compiler that generates more efficient code (ZISP’) in the currently 

implemented form of the language (MtL). 

e compile it with the existing compiler to obtain a new optimised compiler, which itself 

is still implemented in a less optimal way. 

e compile the definition of the new optimised compiler again, this time with the pre- 

viously obtained “hybrid” compiler, to obtain an optimised compiler which is also 

implemented in a more efficient way then before. 

The result of the last step, again, is a meta-stable implementation. The procedure for 

obtaining a new, optimised form of the MeTa-Lisp compiler is illustrated in Figure 8.3: 

  

MiL ~ LISP’ MiL ~ LISP 
  

  

MiL ~ LISP|MtL|MtL —~ LISPISP' 
      

  

MiL|MtLh — LISPEISP           
LIS PI       

Figure 8.3: Optimising the Implementation 

8.1.2.1 Left-factorisation 

The idea of left-factorisation was introduced in Chapter 2 Section 2.2.1 as a grammar 

transformation technique used to make a grammar suitable for predictive parsing. In the 

implementation of METa-LIsP, left-factorisation is applied not to the grammar but affects 

the procedural interpretation of the translation rules. The compiler identifies those rules 

that share a common prefix, and arranges for code to be generated such that the common 

prefix is expanded only once, and only when that expansion is successful will the remainders 

of the rules be expanded as usual for alternatives. The bindings created in the course of 

the expansion of the common prefix are passed to the semantic actions associated with all 

the rules that had a common prefix.
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8.1.2.2 Parameterisation 

Much of the power and convenience of LISP derives from the fact that its fundamental data 

structure is lists. Doing everything in lists can be elegant, but is costly. Unfortunately there 

are no automatic means of providing cheaper alternative storage structure to replace lists 

invisibly. The Elisp of Emacs [KLLT] and the Window Object Oriented Lisp of the General 

Window Manager [Nah91] are notable attempts in this direction. META-LIsP, in compari- 

son, can be said to provide an even more expensive data structure than LISP: list structures 

definable by grammar rules. The manipulation of these structures can easily be more ex- 

pensive than the manipulation of list structures. Fortunately, there is a way of providing all 

the extra expressive power of defining list structures through grammatical means without 

loss of efficiency. The key to this is that it is possible to distinguish between definitions 

that really require parsing to take place, and those that require only pattern matching. The 

meta-circular compiler for META-LISP applies such an analysis. This analysis is referred to 

a parameterisation. 

The performance of the compiler is approximately 2000 lines per minute including com- 

pilation by the LISP compiler,( or about 4000 lines per minute excluding compilation by 

LISP), on an IPC workstation running Lucid Sun Common Lisp version 4.0.1.
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8.2 The METaA-LIsP Programming Environment 

189 

The Programming Environment for META-LISP provides most of the usual facilities that 

are expected of languages for symbolic computations. These include 

e Incremental Entry of Programs 

Separate Compilation 

Debugging Facilities 

Browsing Facilities 

Integration with Emacs 

<n> 

aLbort] 

bLlreak] 
cLreep] 

dLevelop] 

e[dit] 
f [ail] 
h[elp] 
lLeap] 
LLeap] 

nLodebug] 
r[eturn] 

s [kip] 
S [kip] 
tLrace] 
+ 

; <int> 

<n 

: do <n> steps 
: abort execution 

: enter a new break level 
: switch to creep mode 

: enter development tool 
: edit current concept 

: fail the current expansion 
: print this help 

: leap to next spy point 

: leap and show the trace 

: switch off debugging and continue execution 
> return current concept 

: skip spypoints until current call returns 
: skip and show the trace 

: Show trace on spypoints without stopping 
: add spypoint to the current concept 

: remove spypoint from the current concept 

: backtrack one step 

: backtrack <int> steps 
: set print depth to <n> 

Figure 8.4: Trace Commands 

A User Manual for MeTas-LispP is under preparation. [Laj93]
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Chapter 9 

Conclusion 

This chapter summarises the main contributions of this dissertation. It also indicates di- 

rections for future work. The Chapter concludes with a brief discussion of the place of 

MeEtTA-LISP in relation to other languages for symbolic computations. 

9.1 Contributions 

The starting point of this dissertation was the observation that the set of valid inputs to a 

program can be regarded as a form of computer language — an input data language. It was 

then proposed that programs can be viewed as interpreters or compilers of their input data 

language. The central thesis of this dissertation has been that the adoption of this language 

oriented view of programs leads to the establishment of a new programming style, according 

to which programs are designed and specified as translators of their input language. 

As the means of exploring the potential of language oriented programming the design and 

implementation of a new programming language, called META-LISP, have been presented. 

MeEtTa-LIsP combines the syntax-directed model of computation with the functional model 

in one language. The language meets the following design objectives: 

e It provides linguistic support for the design of programs as translators of their input 

language. That is to say, it supports programming in the language oriented style. 

e Meta-LisP integrates well with LISP, which means 

— inter-operability, i.e. META-LISP programs can incorporate LISP functions and 

vice versa 

— the gain in expressive power over LISP has been achieved without loss in efficiency 
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e The definitional power of the language is not excessive. This has been achieved by 

— tying the language-definitional formalism to a particular — transparent — parsing 

algorithm. 

— fixing the order of evaluation in the semantic actions. 

From the standpoint of programming methodology the main contribution of the present 

work is to offer a uniform design methodology. It is uniform, since at every level the 

programmer faces the following tasks: 

e Define the set of valid inputs to the program explicitly as a language. 

e the guiding principle for such definition is that the structure thereby imposed on the 

input should reflect the conceptual structure of the problem domain 

e the semantic actions that are to be associated with each rule of the grammar that 

define the set of valid input to the program are to be formulated to reflect the ap- 

plicative structure of solutions that the program is to offer to problems describable in 

terms of the input language of the program. 

The case studies presented in this thesis served to demonstrate the success of the language 

orinted methodology. The META-LISP sytems contains a great number of programs written 

in MetTa-Lisp. Nearly everything in the system is written in META-LISP. 

The best words that I can find to capture the essence of the methodology of language 

oriented programming in META-LISP were written twenty years ago by Dijkstra in his Turing 

award lecture speculating on the form of “future” programming languages. META-LISP can 

be said to invite us “to reflect in the structure of what we write down all the abstractions 

needed to cope conceptually with the complexity of what we are designing” [Dij72, 865] 

9.2. Future Work 

The future work discussed in this section encompasses improvements to, and enhancement 

of META-LiIsP, the language, and its associated programming system. 

9.2.1 Improvements 

The areas of planned improvements include the incorporation of ‘copying’ rules for synthe- 

sised attributes into the language, improvements to the module system, exception handling 

and support for meta-programming.
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Looking at the code for the meta-circular interpreter makes a convincing case for the 

need of rules governing the copying of synthesised attributes. Attribute grammars have been 

criticised in the literature for the same prevalence of copying rules. It appears, that easy 

access to “long-distance”’ [Wai90, 261] relationships between attributes could be provided 

in MeTa-LIsP by a suitable modification of its semantics. This needs further investigation. 

The facility for importing the functionality of effective concepts from other modules is 

rudimentary. It constitutes a single, unstructured name space of modules. Work needs to 

be done to make this more sophisticated. 

A not unrelated problem concerns the integration of META-LIsP with LISP. The seman- 

tics of MeTa-Lisp as defined by the meta-circular interpreter, exclude the importation of 

LISP macros. The compiler allows this. It seems desirable that this discrepancy be resolved 

in favour of the compiler; i.e. to allow macros to be incorporated into METa-LisP programs. 

Exceptional situations and error handling, in general, have been rather neglected. These 

issues will need to be addressed in the future. 

The price of MeTa-LisP’s gain in expressive power, when it is compared to LISP, has 

been the loss of one of LISP’s main asset: the uniformity of representation of programs 

and data. MerTa-Lisp being a meta-language, per se, allows the routine construction of 

meta-programs, i.e. programs that treat another program as data. However, it is nothing 

like as straight-forward as in LISP, or PROLOG for that matter. ! Work needs to be 

done to develop the mechanisms for disciplined access to the meta-programs in the META- 

Lisp system (the interpreter, the compiler, reader, printer, partial evaluator, type checker, 

etc) and their components. There is also a need to relate the present work to the results of 

research on meta-programming in logic programming [HL89] and reflection in LISP [Smi84]. 

9.2.2 Enhancements 

There is plenty of scope for future enhancements. Some of these concern the design of 

Meta-LisP itself, others concern the environmental support. There is a great deal of 

overlap between the two, too. 

9.2.2.1 Type Checking 

Meta-LisP is an untyped language. As in the case of LISP, this can be a great asset for 

the purpose of exploratory programming. In particular, it makes it possible to interleave 

testing and development to a much greater extent than in typed languages. In the case 

1This may turn out to be more of an asset, than a liability.
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of LISP, this makes “debugging the nil program” a serious candidate for a model of the 

software development process. Similarly, in META-LISP, even an incomplete elaboration of 

a program will work and may produce meaningful output, if the input on which it is tested 

belongs to the (partially defined) input language of the program. Even if the input is not 

acceptable (yet) the program can be run and examined. This can even help to debug the 

design of the input language itself. There are certain circumstances, however, where the 

typeless character of the language is a disadvantage. Experience in writing denotational 

style language definitions in META-LIsP has clearly demonstrated this. The ideal solution 

appears to be to develop a type inference scheme for META-LISP — a way of finding out 

the type of an effective concept from its definition — to be incorporated into a type checker 

which could be enabled or disabled depending on the current requirements of program 

development. 

9.2.2.2 Partial Evaluation 

A related area of future enhancements, this time of the programming system, is the develop- 

ment of a partial evaluator for META-LIsP. Partial evaluation is a program transformation 

technique which specialises programs with respect to given incomplete data. The devel- 

opment of partial evaluators for all kinds of languages (Scheme, PROLOG, the lambda 

calculus, etc) has recently become a very active research area. Partial evaluation is be- 

ing used in program transformation, semantics directed compiler generation, generation of 

compiler-compilers, etc. For references see [GJ91]. 

The motivation for the development of a partial evaluator for META-LISP is twofold. 

First, it could be used to generate a compiler for META-LIsP from its denotational style 

meta-circular definition. Secondly, it could be used to generate compilers for other languages 

from their denotational style interpreter written in META-Lisp. The expectation is that 

this would open up another avenue for semantics directed compiler generation, including 

the implementation of “designer” languages, in accordance with the basic philosophy of 

language oriented programming. 

9.2.2.3 Program Inversion 

Most of the benefits of language oriented programming in META-LIsSP derive from the fact 

that the design of every program, and every non-elementary procedure in every program, 

is based on an explicit definition of their inputs as a language. Although the output of a 

program is also regarded as a language, according to the language oriented view of programs, 

MeEtTA-LisP does not provide linguistic support for this. Instead, the set of valid outputs
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are ‘defined’ only, implicitly. Under certain conditions, it is apparent that an appropriate 

definition of the outputs of a program as a language can be inferred from the definition 

of the program. Such a definition could, in principle, be used as the basis for generating 

inverse programs, as a generalisation of the idea of ‘unparsers’, c.f. [AlI78, 422]. 

9.2.2.4 Automatic Generation of Test Data 

By the generative use of the explicit grammatical description of the set of valid inputs to 

a program, suites of test data can be produced automatically. This facility can be used 

not only in testing, but as a means of evaluating the ‘competence’ of the program in its 

intended field of application. 

9.3. Discussion 

The intended application area of META-LISP is symbolic computation. This section offers 

brief comparisons of META-LISP with four representatives of established programming lan- 

guages for symbolic computation. The four languages that will be discussed are SNOBOL4, 

ML, Prolog and LISP. 

SNOBOL4 is programming language for string manipulation. The input toa SNOBOL4 

program is astring. The output is also a string. A SNOBOL4 program applies string match- 

ing and manipulation of its input to produce its output. In its perspective on programming 

it can be said to show some resemblance to the language oriented view. A major source 

of difference is that the basic data-structure of SNOBOL4 is the string, whereas it is list 

structures in MeTA-Lisp. Whereas the structure of the input, in META-LISP is defined 

using a grammar, in SNOBOL4 the input is defined implicitly through a range of pattern 

matching operations. These operations are quite powerful, and in certain cases can even be 

said to resemble the style of META-LiIsP definitions. Grammatical structures, however, can 

only be described in terms of low level string matching operations which tend to be opaque. 

Compare a SNOBOL4 program for translating arithmetic expressions from infix to prefix 

notation [GPP68, 104-108]. 

ML is a strongly typed functional language. It uses pattern matching as its param- 

eter passing mechanism. In contrast, META-LISP uses syntax-directed translation as its 

parameter passing mechanism. As syntax-directed translation properly subsumes pattern 

matching, MeTA-LIsP can offer capabilities not possessed by functional languages: these 

include support for data abstraction, representation independent or level-wise programming 

(see page 37), as well as support for parser construction. MerTA-LIspP’s syntax-directed
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parameter passing mechanism encourages the use of abstract analysers as an efficient form 

of data-abstraction. (See chapter 3). The usefulness of META-LIsP support for automatic 

parser-construction even on its own, can be judged from the point made by Wikstrom that a 

parser generator is a tool that should accompany an ML system for production use [Wik87, 

294]. An example of this is the grammar feature of CAML [WALT90]. 

ML also provides facilities for abstract data-types. META-LIsP does not provide explicit 

support for this. It is left as a matter of style of writing programs. Incorporating the ideas 

of abstract data-types into MrTA-Lisp will be considered in the future. The planned 

development of a type-inference scheme for META-LIsP will further reduce the differences 

between ML and META-LIsP. 

What is common to both ML as a functional language and META-LISP as a language ori- 

ented programming language, is that they both make commitments about which quantities 

are inputs and which are outputs. This can be contrasted to logic programming languages, 

such as Prolog, that do not make such commitments [Red&6, 3]. The multidirectionality 

of Prolog is a consequence of the fact that Prolog uses unification as its calling mechanism 

[DF P86, 45]. It gives capabilities to Prolog not possessed by ML, or Mreta-Lisp for that 

matter. Through the use of operator declarations Prolog also has explicit language defini- 

tional capabilities. In terms of expressive power, Prolog is clearly superior. However, this 

extra expressive power of Prolog, can be said to be a mixed blessing. For example, the 

multidirectionality of Prolog means in practice that “programmers have to devote as much 

time to think about the different tasks a relation might do, as they would in writing a set 

of functions for these tasks in any other language” [McD80]. 

The semantic backtracking mechanism of META-LISP can be used to provide multiple 

solutions through backtracking. See page 103. In Meta-Lisp backtracking has to be 

explicitly requested, and even then it is limited. It seems preferable to explicitly request 

backtracking rather than prune automatic backtracking with judicious use of cut, as in 

Prolog. 

The greatest price that is paid for Prolog’s extra expressive power is that it is difficult 

to envisage the possible computations that a Prolog clause may give rise to under varying 

circumstances. META-LISP’s emphasis on transparent operational semantics was motivated 

by the desire to avoid the problem associated with excessive definitional power. 

The relationship between LISP and META-LIsP can be likened to the relationship that 

exists between a high-level language and a machine language in which it is implemented. For 

a long time, LISP has been regarded as “the ‘machine language’ for Artificial Intelligence” 

[AllI78, 243]. Even earlier, LISP have been referred to as an implicit meta-language.|Ing66,
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115-6] Meta-Lisp can be considered as an extension of LISP, which makes the meta- 

language character of LISP explicit. In doing so, it inherits a lore of methodological insights 

which have always been part of the LISP tradition. The present work, ultimately, is ded- 

icated to the LISP programmer who may now pen his thoughts within fewer parentheses 

and yet let his ever present linguistic insights master the complexity of his task with greater 

ease.
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