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a b s t r a c t 

Boltzmann machines are unsupervised-learning neural networks, which have contributed to the opening 

of the field of deep learning architectures. Here we show that, using the modern theory of economic 

growth, when the number of agents in a free-market society with equal opportunity exceeds a threshold 

value, a Boltzmann-like income distribution emerges, where the entropy plays the role of swarm intel- 

ligence in humans and quantifies its cumulative technological progress. Theoretically, we further show 

that the emergence of a Boltzmann-like income distribution in a society of optimizing agents reflects the 

spontaneous organization of a human society to form a Boltzmann machine in which each person plays 

a role analogous to that of a neuron within a brain-like architecture. This Boltzmann machine exhibits 

three essential brain-like features, namely the McCulloch-Pitts learning rule, unsupervised-learning, and 

self-motivation, and satisfies in addition the minimum free-energy principle of the brain theory. Empiri- 

cally, we investigate the household income data from 66 free-market countries and Hong Kong SAR, and 

find that, for all of the countries, the income structure for low and middle classes (about 95% of pop- 

ulations) is accurately described by a Boltzmann-like distribution. We suggest that this is a statistical 

signature that our social networks are going through a critical evolution in the form of a kind of brain- 

like structure. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The emergence of intelligence is a mysterious phenomenon. In 

he past, intelligence was often considered as a special ability of 

igher organisms. However, the swarm intelligence in slime molds 

ut into question such reductionism [1] . Although slime molds 

re single-celled brainless organisms [ 1 , 2 ], through interactions de- 

ending on external conditions, they have the ability to find the 

inimum-length solution between two points in a labyrinth. The 

henomena of swarm intelligence have been found in many bi- 

logical colonies [ 3 , 4 ], such as ants [5–7] , bees [ 6 , 8 , 9 ], birds

 10 , 11 ], fishes [12–14] , humans [ 4 , 15–18 ] and so on. Inspired by

he notion of swarm intelligence, some scholars even argue that 

collective minds” might emerge from biological colonies [ 19 , 20 ]. 

n this vein, the function of the human brain seems to be a swarm

ntelligence of neurons: to the best of our knowledge, none of the 
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eurons can intelligently think something, but the brain, which 

onsists of tens of billions of neurons, can. From this perspective, 

he phenomenon of swarm intelligence sheds new light on un- 

erstanding the operation of the brain; therefore, it is meaning- 

ul to investigate how swarm intelligence emerges from biological 

olonies. 

To explore swarm intelligence, let us first consider ants’ behav- 

ors (see Fig. 1 a), which are quite simple. They communicate with 

ach other by using tentacles and via pheromones (see Fig. 1 b), 

nd each one has arguably meager intelligence. However, as the 

umber of ants increases, they can do some (what can be deemed 

o be) intelligent activities (see Fig. 1 c). Specifically, as long as the 

umber of ants exceeds a threshold value, they will display highly 

omplex and apparently intelligent behavior, e.g., building a bridge 

n the air (see Fig. 1 d). By observing the behaviors of ants, we sug-

est that the swarm intelligence is a phenomenon of quantitative 

ccumulation leading to qualitative transformation. We hypothe- 

ize that, when the number of individuals in a biological colony 

xceeds a sufficiently large threshold value, the colony will exhibit 

lobal intelligent behaviors. In a similar way, Fig. 1 e shows that, to 

https://doi.org/10.1016/j.chaos.2020.110543
http://www.ScienceDirect.com
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Fig. 1. Quantitative accumulation leads to swarm intelligence. a: The behaviors of ants are quite simple, and one ant has limited intelligence. b : Ants communicate with 

one another by using tentacles and by releasing pheromones. c : As the number of ants increases, they can perform intelligent activities. d : As long as the number of 

ants exceeds a sufficiently large threshold value, they will display highly complex and apparently intelligent behaviors, e.g., building a bridge in the air. e: Quantitative 

accumulation leading to swarm intelligence is a universal phenomenon. To confuse the potential predators, thousands of sardines “intelligently” array themselves to disguise 

as a “dolphin”. 
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onfuse the potential predators (such as sharks), thousands of sar- 

ines “intelligently” array themselves to disguise as a “dolphin”. As 

ar as we know, each sardine probably does not understand why 

hey have constituted a “dolphin”. 

Inspired by the four examples of slime molds, neurons, ants and 

ardines, we now propose a mathematical model of the mecha- 

ism by which quantitative accumulation can lead to swarm intel- 

igence. In this paper, we apply this formalism to humans and the 

mergence of collective intelligence in human societies. 

. Two-parameter Boltzmann-like distribution 

Like other biotic populations, humans, who are lying at the top 

f the biological chain, also exhibit swarm intelligence as long as 

he number of individuals exceeds a sufficiently large threshold 

alue. To see this, we use the modern theory of economic growth, 

here gross domestic product (GDP) of a human society can be 

ritten in the form [21] : 

DP = E ( N ( L, K ) , T ) , (1) 

here N( L, K ) denotes the number of agents, L denotes the amount 

f labor, K denotes the stock of capital, and T denotes the techno- 

ogical factor of the society. The productions and exchanges among 

( L, K ) agents can be simulated by Arrow-Debreu general equilib- 

ium model [22] , which is a system of procedural justice [ 23 , 24 ].

his model describes well a competitive economy with equal op- 

ortunity, just as a Blockchain economy. Based on this model, Tao 

24–26] showed that, as an evolutionary result of natural selection, 

hen the number of agents, N( L, K ) , exceeds a threshold value N 0 , 

 Boltzmann-like income distribution will emerge: 

 

a i = e −
ε i −μ

θ

ε i ≥ μ
i = 1 , 2 , . . . , n 

, (2) 

here a i denotes that there are a i agents, each of which obtains ε i 
nits of income, and ε 1 < ε 2 < . . . < ε n . Here, the threshold value 

 0 is a sufficiently large number determined in [24–26] . Further- 

ore, one has by definition N( L, K ) = 

n ∑ 

i =1 

a i and E( N( L, K ) , T ) = 

n ∑ 

 =1 

a i ε i . The parameters μ = ∂ E/∂ N and θ = ∂ E/∂ T obey a self-

eferential equation [18] : 

 

∂E ( N, T ) + ( T − N ) 
∂E ( N, T ) = E ( N, T ) , (3) 
∂N ∂T 

2 
hich guarantees that the technological factor T is self-referential 

27–29] , see Supporting Information (SI). By solving Eq. (3) , T 

beys the following form [18] : 

 = ln �
({ a i } n i =1 

)
− ln N! . (4) 

Here �( { a i } n i =1 
) denotes the size of the set of N agents’ permis- 

ible collective strategies [24] , i.e., these N agents can freely and 

ollectively take any option among �( { a i } n i =1 
) consensus strategies, 

here N ≥ N 0 . The mathematical form of Eq. (4) shows that the 

echnological factor T can be interpreted as the entropy of a hu- 

an society as well [ 24 , 25 ]. The factor ln N! in Eq. (4) is the fa-

ous Gibbs term. This indicates that the Boltzmann-like distribu- 

ion (2) is similar to a quantum distribution, which differs from 

he Boltzmann distribution as described in a classical context by 

ragulescu and Yakovenko [30] . The presence of the Gibbs term is 

ue to the self-reference nature of the entropy in a human society. 

ater, we will show that the Gibbs term drives a human society to 

ecome a self-motivated system. 

. Swarm intelligence and entropy 

We propose to interpret technological progress in a society as 

quivalent to improving swarm intelligence in humans. Hence, by 

q. (4) , the so-called emerging intelligence comes simply from 

any more options of collective strategies as long as the number 

f individuals, N, exceeds the threshold value N 0 . From this stand- 

oint, swarm intelligence actually aims to maximize the freedom 

f options in collective decisions [ 24 , 31 ]. This is also in agreement

ith the concept that self-organization in complex systems [32–

2] can be treated as decision making (as it is performed by hu- 

ans) and, vice versa, decision making is nothing but a kind of 

elf-organization in the decision maker nervous systems [17] . In- 

eed, self-organization can be mapped onto the process of eval- 

ating the probabilities of macroscopic states or, equivalently, of 

rospects in the search for a state with the largest probability. And, 

he general way of deriving the probability measure for classical 

ystems is the principle of minimal information, that is, the con- 

itional entropy maximization under given constraints. Moreover, 

elated combinatorial arguments have been used to explain the J- 

hape of the acceleration innovations [43] . Furthermore, swarm in- 

elligence in humans is supported by the emerging market intel- 

igence hypothesis [16] , which stresses that the collective intelli- 

ence dwarfs the individual ones. 
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On the other hand, some scientists proposed that human coop- 

ration can be regarded as a manifestation of swarm intelligence 

n humans, and in this vein there is a literature relating human 

ooperation to phase transition in the sense of statistical physics 

 44 , 45 ]. In the next section, we will show that, if the income struc-

ure of a society obeys the Boltzmann-like income distribution (2), 

his society will form a Boltzmann machine, which can be regarded 

s a special version of the Ising model. It is well-known that the 

atter may have phase transition. This leads to the potential of 

tudying phase transitions occurring in a human society. 

. Spontaneous emergence of a Boltzmann machine 

Since the Boltzmann-like distribution (2) is associated with the 

mergence of technology (4), itself related to swarm intelligence, 

e investigate how it affects the behaviors of humans. We first 

how that the Boltzmann-like income distribution (2) will spon- 

aneously induce a human society to form a Boltzmann machine 

46–51] . To derive the Boltzmann machine, we assume that the 

DP, E, should be a function of the state variables of agents. Let 

s denote the state variables of N agents by the vector ( h , v ) = 

 h 1 , . . . , h n , v 1 , . . . , v m 

) , where n + m = N. For example, we can use

 i = 1 (or v j = 1 ) to denote that the agent i (or agent j) is active

n markets, and h i = 0 (or v j = 0 ) to denote inactivity. Thus, with-

ut loss of generality, the GDP E = E( h , v ) can be expanded as the

aylor’s series: 

 ( h , v ) = E ( 0 , 0 ) + E 1 ( h , v ) , (5) 

ith 

 1 ( h , v ) = 

n ∑ 

i =1 

m ∑ 

j=1 

ω i j h i v j + 

n ∑ 

i =1 

n ∑ 

j=1 

σi j h i h j 

+ 

m ∑ 

i =1 

m ∑ 

j=1 

ρi j v i v j + 

m ∑ 

j=1 

b j v j + 

n ∑ 

i =1 

c i h i , 

here ω i j , σi j and ρi j represent weights, and b j and c i represent 

iases. Here, we only expand the series up to second-order terms. 

et us assume that the income structure among N agents obeys 

he Boltzmann-like distribution (2). Thus, the joint probability dis- 

ribution among N agents, P ( h , v ) , can be derived as (see SI): 

 ( h , v ) = 

1 

Z 
e −

E ( h , v ) −N·μ
θ , (6) 

here Z = 

∑ 

h 

∑ 

v 
e −

E( h , v ) −N·μ
θ denotes the partition function. 

For simplicity, we consider σi j = ρi j = 0 . However, our result 

olds for general case as well. Following the tradition of deep 

earning, we consider the neural networks consisting of hidden and 

isible neurons. If we regard agents h = (h 1 , . . . , h n ) as the “hidden

eurons” and agents v = (v 1 , . . . , v m 

) as the “visible neurons”, an

-human society resembles a neural network in which v serves as 

 signal input, as depicted in Fig. 2 a. In such a neural network, it

s not important to assign a given social member as being a vis- 

ble neuron or a hidden neuron. The assignment can be regarded 

s a random process. The probability that the neural network as- 

igns to the visible vector v is given by summing over all possible 

idden vectors: 
∑ 

h 

P ( h , v ) ; therefore, the Boltzmann machine is de- 

ermined by the maximum likelihood estimate: 

ax 

 

ω ∗
i j 
,c ∗

i 
,b ∗

j } : ln 

( ∑ 

h 

P ( h , v ) 

) 

. (7) 

The “maximum likelihood” formulation of the optimal prob- 

em (7) indicates that the Boltzmann-like distribution (2) “spon- 

aneously” induces the human society to form a Boltzmann ma- 

hine. That is to say, the observed society is the one that is the 

ost probable among all possible organisms. 
3 
. Three brain-like features 

The Boltzmann machine (7) has two properties relating to a 

rain’s learning, which suggests that a human society obeying the 

oltzmann-like income distribution (2) resembles a brain. First, the 

earning rule is local, which makes Boltzmann machine learning bi- 

logically plausible [52] . To see this, let us order (h , v ) ∈ { 0 , 1 } n + m 

.

y Eqs. (5) and (6) , for a given signal input v , the probability of

ctivating the i th hidden neuron can be calculated as [49] : 

 ( h i = 1 | v ) = σ

( 

m ∑ 

j=1 

ω 

∗
ij ν j + c ∗i 

) 

, (8) 

here σ (t) = 

1 
1+ e −t . Eq. (8) is the well-known McCulloch- 

itts model of neurons [53] . Second, Boltzmann machines are 

nsupervised-learning systems, which captures the feature of 

uman-like learning. However, these features of the Boltzmann 

achine (7) do not establish whether such a human society resem- 

les a real brain enjoying “self-motivation”. However, we immedi- 

tely show that, due to the self-referential Eq. (3) , the Boltzmann 

achine (7) is a self-motivated system, which differs from Hinton’s 

ersion [46–48] . Using Eqs. (3) and (6) , Eq. (7) can be rewritten in

he form [54] : 

 

Max { ω ∗i j 
,c ∗

i 
,b ∗

j } : ln 

(∑ 

h 

P ( h , v ) 
)

s.t. 
∑ 

h 

∑ 

v 
P ( h , v ) = 1 

, (9) 

here 

 ( h , v ) = e −T (10) 

nd 

 = E ( h , v ) − N · lnN. (11) 

Here, P ( h , v ) denotes the probability that N agents remain in 

he state ( h , v ) , and Eq. (11) is the solution of Eq. (3) . Without loss

f generality, the coefficient in front of E( h , v ) has been absorbed 

nto Eq. (5) . The constraint 
∑ 

h 

∑ 

v 
P ( h , v ) = 1 indicates that the hu-

an society cannot be of the traditional Boltzmann machine type 

hat has been commonly studied before. To see this, we observe 

hat Eqs. (10) and (11) imply 

 ( 0 , 0 ) ≥ N · ln N ≈ ln N! > 0 (12) 

or N ≥ 2 . 

This is a quite surprising result, which means that a neural net- 

ork always has a positive energy even if each neuron is inactive. 

t significantly differs from traditional Boltzmann machine, where 

( 0 , 0 ) = 0 . In particular, we again observe that the Gibbs term 

n N! appears in Eq. (12) . This leads to the presence of a kind of

ero-point energy (usually related to quantum effects in physics), 

hich is consistent with the existence of the Gibbs term in Eq. (4) .

ue to this positive zero-point energy, the Boltzmann machine (7) 

r (9) can activate its neurons by itself; that is, the iterative algo- 

ithm E 0 → E 0 + E 1 → E 0 . . . leads to an infinite run process [54] . 

n this sense, the Boltzmann machine (7) or (9) is a self-motivated 

ystem. Furthermore, we point out that the Boltzmann machine (7) 

r (9) is in accordance with the minimum free-energy principle of 

he brain theory [55] . To see this, let us write down the free energy

f the visible vector v : 

 ( v ) ∝ −ln 

( ∑ 

h 

e −E ( h , v ) + N·lnN 

) 

= −ln 

( ∑ 

h 

P ( h , v ) 

) 

. (13) 

Obviously, the maximum likelihood procedure (9) is equivalent 

o minimizing the free energy (13). Therefore, Boltzmann machine 

7) or (9) satisfies the minimum free-energy principle [55] . Because 
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Fig. 2. The well-functioning free-market society spontaneously forms a self-motivated Boltzmann machine. a: If a human society obeys the Boltzmann-like income distribu- 

tion (2), then it can be mapped to a Boltzmann machine consisting of hidden and visible neurons, where each person plays the role of a neuron. b : Since a well-functioning 

free-market society exhibits McCulloch-Pitts learning rule, unsupervised-learning, self-motivation, and satisfies the minimum free-energy principle of the brain theory, it can 

be thought of a social brain. Here, a pictorial representation of social brain based on bipartite network structure in Fig. 2 a is exhibited. 
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he Boltzmann machine (7) or (9) exhibits McCulloch-Pitts learning 

ule, unsupervised-learning, self-motivation, and satisfies the min- 

mum free-energy principle of the brain theory, we propose that 

he Boltzmann-like income distribution (2) is a statistical signature 

hat the human society functions like a social brain as described 

y Fig. 2 b. 

Finally, we point out that the Boltzmann machine (9) may have 

 phase transition that is related to criticality because it is a spe- 
4 
ial type of Ising model. The literature has reported a number of 

esults on collective and swarm intelligence where it seems to ap- 

ear close to a critical point or, in some system, it emerges as a 

ind of phase transition [56–61] . In this vein, the Ising model has 

een considered as an important starting point for understanding 

he collective behaviors of neurons in a brain [56] . A large lit- 

rature has reported that the brain operates at or close to crit- 

cality [56–58] , with mechanisms making criticality attractive to 
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Fig. 3. The test for Boltzmann-like income distribution (2) based on the household data in the United Kingdom . a : The household income data from 2001 to 2015 are fitted 

to the Boltzmann-like income distribution (2), where the fitting results are of good quality except the top income samples (about three quantiles). b: The estimate values 

of μ from 2001 to 2015 are obtained by fitting the Boltzmann-like income distribution (2) to household income data for each year. All estimate values are regressed as a 

function of the real unemployment compensations. The fitted equation is in accordance with the theoretical result (14). c: For the average income for the United Kingdom, 

the observed value curve is just a translation of the theoretical value curve. Such a translation is simply due to the discreteness of the bins of observed values in the 

histogram, which are used to compute the average income. d: The detrended regression between x̄ theory and x̄ obs is carried out, where the R 2 still yields 0.94 even when the 

trend effect has been taken into account. 
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he dynamics, which is often referred to as “self-organized criti- 

ality”. In the picture of the Ising model, the criticality occurs by 

ne-tuning a control parameter, e.g., the temperature [56] . What 

ould make a fundamentally unstable critical point become self- 

rganized? Sornette et al. have proposed that dynamical feedbacks 

f the order parameter onto the control parameter provide a gen- 

ral mechanism for this [62–64] . But in general, it is not under- 

tood how self-fining to criticality could occur in a living organ- 

sm. Here we propose that the self-motivated feature of the Boltz- 

ann machine (9) provides a plausible mechanism for achieving 

he self-fining to criticality. Due to the existence of the zero-point 

nergy, the Boltzmann machine (9) can activate its neurons by it- 

elf. Based on this self-motivated mechanism, it is possible for the 

oltzmann machine (9) to fine-tune control its parameters by it- 

elf (via self-motivated learning). In this sense, the unsupervised- 

earning function of Boltzmann machine (9) is only a lower intelli- 

ence behavior (e.g., mechanical memory). By contrast, we suggest 

hat self-organized criticality could indicate a higher level of intel- 

l

5 
igence. Indeed, there have been investigations supporting that the 

onsciousness of brain may be related to self-organized criticality 

59–61] . 

. Empirical evidence for the two-parameter Boltzmann-like 

istribution 

Finally, we carefully investigate if the Boltzmann-like distribu- 

ion (2) really describes the income structure of human societies. 

he empirical investigation is divided into two steps. First, we test 

f the exponential law (2) is in accordance with household income 

ata. Second, we further test if the predicted values of the parame- 

ers μ and θ in Eq. (2) agree with actual data. This two-step inves- 

igation provides a credible test of the validity of the Boltzmann- 

ike distribution (2). 

First, we investigate if the exponential law (2) is in accordance 

ith household income data. Since the Arrow-Debreu general equi- 

ibrium model describes a competitive economy with equal oppor- 
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Fig. 4. Income structure of low and middle classes in the United Kingdom (2001) obeys the exponential distribution. The scope of the low and middle income classes ranges 

from the upper-bound of the super-low income class to the lower-bound of top income class. Both boundaries are marked by two red dotted lines, respectively. The “single 

peak” in the exponential distribution roughly corresponds to the upper-bound of the super-low income class, which is marked by the “unemployment compensation line”. 
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1 Here, the peak position denotes the truncation position of exponential distribu- 

tion on the side of the low income class, which is marked by the unemployment 

compensation line, see Fig. 4 . Technically, by fitting exponential distribution (2) to 
unity [24] , the Boltzmann-like distribution (2) is expected to de- 

cribe the low and middle income classes in free-market countries 

65] . By contrast, the top income class refers to monopoly and un- 

qual opportunity, and hence obeys the Pareto distribution due to 

he Matthew effect [ 26 , 65 , 66 ], while the super-low income class

efers to unemployment. Both of them fail to satisfy the setting 

f the Arrow-Debreu general equilibrium model, and hence do not 

onform to the exponential law (2). Thus, the scope of the low 

nd middle income classes ranges from the upper-bound of the 

uper-low income class to the lower-bound of top income class, 

ee Fig. 4 . During the past two decades, there had been many re-

orts confirming the validity of an exponential law in describing 

he low and middle income classes [ 30 , 65 , 67–69 ]. For example,

ao et al [65] have recently analyzed the datasets of household in- 

ome from 66 countries and Hong Kong SAR, ranging from Europe 

o Latin America, North America and Asia. For all these countries, 

hey find that the income distribution for low and middle income 

lasses of populations follows the exponential law (2). As a typical 

xample, in this paper we only investigate the low and middle in- 

ome classes in the United Kingdom from 2001 to 2015. The fitting 

esults are of good quality, where the adjusted R 2 values are higher 

han 0.99, see Fig. 3 a. 

To intuitively see how the low and middle income classes con- 

orm to the exponential law (2), we also depict the household in- 

ome data of United Kingdom in 2001 as the density function in 

ig. 4 , where the upper-bound of the super-low income class and 

he lower-bound of top income class are marked by two red dot- 

ed lines, respectively. The adjusted R 2 of fitting the exponential 

aw (2) to household income data of United Kingdom in 2001 is 

.995. It might be superficially confused that the Fig. 4 shows a 

ight-skewed distribution with a single peak as described by a Log- 

ormal function. However, later we will explain that, according 

o the scope of application of the exponential law (2), the single 

eak in Fig. 4 should roughly correspond to the upper-bound of 

he super-low income class, which is marked by the “unemploy- 

ent compensation line”. This implies that one can use the “peak 

h

6 
osition”1 in the exponential law (2) to predict the realistic value 

f unemployment compensation. By fitting the exponential law (2) 

o household income data of United Kingdom, we have exactly pre- 

icted the evolution of the unemployment compensation in the 

nited Kingdom from 2001 to 2015, see Fig. 3 b and the upcoming 

iscussion. By contrast, the Log-Normal function has no predictive 

ower. 

Second, we investigate if the predicted values of the parameters 

and θ in Eq. (2) agree with actual data. By using Eqs. (1) –(3) , μ
an be written as: 

= σ · ω + c, (14) 

here σ ≥ 0 , c ≤ 0 , and ω denotes unemployment compensation. 

he derivation for Eq. (14) and the test procedure for the linear 

elationship between μ and ω can be found in the SI. For the 

ears from 2001 to 2015 in the United Kingdom, the test result 

as been listed in Fig. 3 b, where the adjusted R 2 yields 0.96. More 

mportantly, the present fitting result gives σ = 3 . 62 > 0 with a 

p-value < 10 −9 and c = −4697 < 0 with a p-value < 10 −4 , which

re perfectly consistent with the theoretical predictions. To test θ , 

e employ Eq. (2) to obtain the theoretical average income: 

¯
 theory = μ + θ − ( x max + θ ) e 

−( x max −μ) 
θ , (15) 

here x max denotes the maximum income of low and middle 

lasses. Using the histogram for household income data in the 

nited Kingdom, we can also calculate the observed average in- 

ome x̄ obs . If the predicted value of the parameter θ agrees with ac- 

ual data, we should have x̄ theory = x̄ obs . The empirical investigation 

n SI shows x̄ theory ≈ 1 . 051 · x̄ obs with the adjusted R 2 being 0.99. 

he difference between x̄ theory and x̄ obs is due to the use of dis- 

rete bins in the histogram, resulting in a simple translation of the 
ousehold income data, one can determine the peak position. 



Y. Tao, D. Sornette and L. Lin Chaos, Solitons and Fractals 143 (2021) 110543 

o

T

b

i

t

i

S  

d

d

t

g  

6

t

w

t

r

f

a

e

i

b

n

t

m

c

i

7

d

q

f

v

t

e

i

B

s

s

t

d

t

c

9

t

c

t

m

C

a

4  

a

D

A

f

S

t

c

S

f

N

E

d

 

t

d

w

d

d

w

d

=

d

d

T

bserved value curve from the theoretical value curve, see Fig 3 c. 

his difference can be decreased by reducing the length of each 

in in the histogram. The derivation for Eq. (15) and the empirical 

nvestigation procedure can be found in SI. Here, we also clarify 

hat, for the regression between x̄ theory and x̄ obs , the time trend is 

nsignificant, see Fig. 3 d, where the trend effect has been removed. 

ince Eqs. (2) , (14) and (15) are all in good agreement with real

ata, this lends support to the hypothesis that the Boltzmann-like 

istribution (2) indeed describes the low and middle income struc- 

ure of free-market countries, which include 66 samples. 

Regarding unequal opportunity, we have mentioned that it trig- 

ers the Pareto distribution due to the Matthew effect [ 26 , 65 ,

6 ]. From this sense, Pareto distribution and Boltzmann-like dis- 

ribution lie at two extremes among all kinds of social structures, 

hich imply “the law of jungle (unequal opportunity)” and “jus- 

ice as fairness (equal opportunity)”, respectively. Through time, 

oughly speaking, we humans have explored four social structures, 

rom hunter-gatherer societies, slave-based societies, feudal hier- 

rchical societies, to various types and levels of democratic soci- 

ties. Today, with the continuous rise of digital interconnection, 

nstantaneous communications, media and blog-based echo cham- 

ers, we humans are undergoing a great change within our social 

etworks, further amplified by the rise of artificial intelligence. Due 

o the emergence of Boltzmann-like income distribution in 66 free- 

arket countries, we conjecture that our world is going through a 

ritical evolution in the form of a kind of brain-like social organ- 

sm, namely, a self-motivated Boltzmann machine. 

. Conclusion 

We have proposed that swarm intelligence in humans can be 

efined as a phenomenon of quantitative accumulation leading to 

ualitative transformation. As long as the number of agents in a 

ree-market society with equal opportunity exceeds a threshold 

alue, a Boltzmann-like income distribution (2) will emerge, where 

he entropy plays the role of swarm intelligence in human soci- 

ties. Theoretically, we have shown that a human society obey- 

ng the Boltzmann-like distribution (2) will spontaneously form a 

oltzmann machine, which exhibits the three brain-like features 

uch as McCulloch-Pitts learning rule, unsupervised-learning, and 

elf-motivation, and satisfies the minimum free-energy principle of 

he brain theory. Empirically, by checking the household income 

ata from 66 countries and Hong Kong SAR, ranging from Europe 

o Latin America, North America and Asia, we find that, for all of 

ountries, the income structure for low and middle classes (about 

5% of the populations) precisely follows the Boltzmann-like dis- 

ribution (2). Based on the theoretical and empirical research, we 

onjecture that our world is going through a critical evolution in 

he form of a kind of brain-like social organism, namely, a self- 

otivated Boltzmann machine. 
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Self-reference of the technological level T : 

The Boltzmann-like income distribution can be written in the 

orm [ 18 , 54 ]: a i = 

1 

e α+ βε i 
, by which one has: 

 = N ( L, K ) = 

n ∑ 

i =1 

a i . (A.1) 

 = E ( N ( L, K ) , T ) = 

n ∑ 

i =1 

a i ε i . (A.2) 

By using Es. (A.1) and (A.2) , we have: 

∂N 

∂α
= −N, (A.3) 

∂N 

∂β
= −E. (A.4) 

The differential of Eq. (A.4) yields: 

 E = −d 

(
∂N 

∂β

)
= − 1 

β
d 

(
β

∂N 

∂β

)
+ 

1 

β

∂N 

∂β
d β. (A.5) 

By Eq. (A.1) , we know that N is a function of α and β; therefore,

he complete differential of N gives: 

 N = 

∂N 

∂α
d α + 

∂N 

∂β
d β, (A.6) 

hich leads to: 

∂N 

∂β
d β = d N − ∂N 

∂α
d α. (A.7) 

Substituting Eq. (A.7) into (A.5) yields: 

 E = − 1 

β
d 

(
β

∂N 

∂β

)
+ 

1 

β
d N − 1 

β

∂N 

∂α
d α. (A.8) 

On the other hand, we have: 

 

(
α

∂N 

∂α

)
= αd 

(
∂N 

∂α

)
+ 

∂N 

∂α
dα, (A.9) 

hich leads to: 

∂N 

∂α
d α = d 

(
α

∂N 

∂α

)
− αd 

(
∂N 

∂α

)
. (A.10) 

Substituting Eq. (A.10) into (A.8) yields: 

 E = − 1 

β
d 

(
β

∂N 

∂β

)
+ 

1 

β
d N − 1 

β
d 

(
α

∂N 

∂α

)
+ 

α

β
d 

(
∂N 

∂α

)

 

α

β
d 

(
∂N 

∂α

)
+ 

1 

β
d 

(
N − α

∂N 

∂α
− β

∂N 

∂β

)
. (A.11) 

By Eq. (A.3) , one can rewrite Eq. (A.11) in the form: 

 E = −α

β
d N + 

1 

β
d 

(
N − α

∂N 

∂α
− β

∂N 

∂β

)
. (A.12) 

Moreover, the complete differential of Eq. (A.2) yields: 

 E = 

∂E 

∂N 

d N + 

∂E 

∂T 
d T . (A.13) 

By Eqs. (A.12) and (A.13) , it is easy to obtain: 

 = N − α
∂N 

∂α
− β

∂N 

∂β
, (A.14) 

https://doi.org/10.13039/501100012226
https://doi.org/10.13039/501100004543
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= 

∂E 

∂N 

= −α

β
, (A.15) 

= 

∂E 

∂T 
= 

1 

β
. (A.16) 

Here, Eq. (A.14) is the definition for the technological level (or 

ntropy) T [54] . Eqs. (A .14) –(A .16) are consistent if and only if the

echnological level T is independent of N. Let us now seek the con- 

ition for guaranteeing that T is independent of N. Using Eqs. (A.3) , 

A .4) , (A .15) and (A .16) , Eq. (A .14) can be rewritten as: 

 = N − μ

θ
N + 

1 

θ
E. (A.17) 

Using Eqs. (A.15) and (A.16) , Eq. (A.17) is equivalent to: 

 

∂E ( N, T ) 

∂N 

+ ( T − N ) 
∂E ( N, T ) 

∂T 
= E ( N, T ) . (A.18) 

Eq. (A.18) is the condition for guaranteeing that T is indepen- 

ent of N. Remarkably, Eq. (A.18) is solvable [54] . For example, 

q. (11) is obtained by using the solution of Eq. (A.18) . To under-

tand the self-reference, we need to observe that, by Eq. (A.18) , E

s a function of T and N, i.e., E = E( N, T ) . Substituting E = E( N, T )

nto Eq. (A.17) , which is the definition of technological level [ 18 , 54 ],

e obtain: 

 = N − μ

θ
N + 

1 

θ
E ( N, T ) , (A.19) 

here T is defined by T , indicating a self-reference. 

Derivation of the joint probability distribution P ( h , v ) among 

agents 

Here, we give the detailed derivation of Eq. (6) . Since the in- 

ome structure of an N-agent society obeys the Boltzmann-like in- 

ome distribution (2), the joint probability distribution among N

gents, P ∗( 1 , . . . , N ) , can be written as: 

 

∗( 1 , . . . , N ) = 

n ∏ 

i =1 

( a i ) 
a i , (A.20) 

here a i and P ∗( 1 , . . . , N ) have been regarded as the unnormalized 

robabilities. 

To obtain Eq. (A.20) , we first assume that the income probabil- 

ty of each agent is independent. Since the probability of obtaining 

 i units of income is a i , by the assumption of independence, the 

oint probability among a i agents, each of which obtains ε i units of 

ncome, equals ( a i ) 
a i = 

a i ︷ ︸︸ ︷ 
a i · a i · · · a i . Eq. (A.20) is the result of taking 

nto account all income levels ε 1 < ε 2 < . . . < ε n . 
Substituting Eq. (2) into (A.20) yields: 

 

∗( 1 , . . . , N ) = 

1 ∏ n 
i =1 e 

a i ε i −a i μ

θ

= 

1 

e 

∑ n 
i =1 

a i ε i −( 
∑ n 

i =1 
a i ) ·μ

θ

. (A.21) 

Finally, we plug Eqs. (A.1) and (A.2) into Eq (A.21) to obtain: 

 

∗( 1 , . . . , N ) = e −
E−N·μ

θ . (A.22) 

Using Eq. (5) , P ∗( 1 , . . . , N ) can be written in the form of nor-

alized probability: 

 ( h , v ) = 

1 

Z 
e −

E ( h , v ) −N·μ
θ , (A.23) 

here Z = 

∑ 

v , h 
e −

E( h , v ) −N·μ
θ denotes the partition function. 

Derivation for Eq. (14) 

By neoclassical economics, the complete differential of 

q. (1) can be specified as [18] : 

 E = ω · d L + r · d K + θ · d T , (A.24)
8 
here ω = 

∂E 
∂L 

denotes the marginal labor return (or unemploy- 

ent compensation) and r = 

∂E 
∂K 

denotes the marginal capital re- 

urn (or interest rate). 

Moreover, by (A.13) we know that Eq. (2) leads to: 

 E = μd N + θd T , (A.25) 

here T = N − α ∂N 
∂α

− β ∂N 
∂β

, and N is independent of T if and only 

f Eq. (A.18) holds. Here we assume Eq. (A.18) holds; therefore, 

omparing Eqs. (A.24) and (A.25) one has: 

· dN = ω · dL + r · dK, (A.26) 

hich can be rewritten as 

= σ · ω − σ · r · MRT S LK , (A.27) 

here, σ = 

dL 
dN 

denotes the marginal employment level and 

RT S LK = − dK 
dL 

denotes the marginal rate of technical substitution 

f labor and capital. By definition of the marginal employment 

evel, we should have [ 18 , 65 ] σ ≥ 0 . Following neoclassical eco- 

omics, we assume that labor L and capital K are substitute to each 

ther, so we have MRT S LK ≥ 0 . If we observe that the interest rate 

is greater than or equal to zero, Eq. (A.27) can be written as: 

= σ · ω + c, 

here σ ≥ 0 and c ≤ 0 . 

The test procedure for the linear relationship between μ and 

To do empirical investigation, Eq. (2) can be rewritten in the 

umulative distribution form [65] : 

 

F ( t ≥ x ) = e 
−( x −μ) 

θ

x ≥ μ
, (A.28) 

By fitting Eq. (A.28) to household income data, one can ob- 

ain the calibrated values of μ for each country. If the Boltzmann- 

ike income distribution (2) indeed describes actual societies, we 

hould expect that the calibrated value of μ and the unemploy- 

ent compensation ω announced by governments should obey the 

inear relationship (14). Since Eq. (a.28) is only suitable for the low 

nd middle income classes, we have to remove both top income 

ata and super-low income data smaller than μ. This leads to a 

ifficulty for the empirical analysis to find the consistent estimate 

f μ. Regarding this, Tao et al [65] have proved a uniform conver- 

ence theorem guaranteeing that the calibration provides a consis- 

ent estimate value of μ only by removing the top income part, as 

ong as the sample sizes is large enough. In contrast to other coun- 

ries, the income data of the United Kingdom contain 99 quantiles 

see data resource in Table 1 ), which are sufficiently large to sat- 

sfy the requirement of the uniform convergence theorem. There- 

ore, we will employ the income data of the United Kingdom to 

est the validity of Eq. (14) . Table 1 has indicated that removing 

hree quantiles in top income samples has guaranteed a quite high 

djusted R 2 . By fitting the household income data of the United 

ingdom to Eq. (A.28) , we have computed the estimate value of μ
see Table 2 ), where we remove only three quantiles in top income 

amples. Here, we have collected the time series data of unemploy- 

ent compensation in the United Kingdom from 2001-2015 (ex- 

ept 2008) (see Table 3 ). Using ordinary least square regressions, 

tting the data of Tables 2 and 3 to Eq. (14) yields Fig. 3 b. As

hown in Fig. 3 b, the fitting result is excellent, where the adjusted 

 

2 yields 0.96. More importantly, the present fitting result gives 

= 3 . 62 > 0 with a p-value < 10 −9 and c = −4697 < 0 with a p-

alue < 10 −4 , which are perfectly consistent with the theoretical 

redictions in Eq. (14) . 

Empirical investigation for Eq. (15) 

Since the Boltzmann-like distribution (2) is suitable for the low 

nd middle classes, the income interval can be denoted by μ ≤ x ≤
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Table 1 

Adjusted R 2 of fitting UK’s household income data to exponential distribution. 

Year 2001 2002 2003 2004 2005 2006 2007 2009 2010 2011 2012 2013 2014 2015 

UK 0.995 0.995 0.995 0.996 0.996 0.995 0.994 0.995 0.996 0.993 0.992 0.990 0.989 0.986 

Data resource: https://www.gov.uk/government/statistics/percentile- points- from- 1- to- 99- for- total- income- before- and- after- tax 

Note: The results of the adjusted R 2 of the fits for the United Kingdom (UK) are listed in Table 1 , where, for each year, three quantiles in the 

top income samples are removed. 

Table 2 

(Pound sterling): observed values of μ. 

Year 2001 2002 2003 2004 2005 2006 2007 2009 2010 2011 2012 2013 2014 2015 

μ 5597 5703 5684 5723 5763 5993 6271 7242 7204 7677 8302 8953 9236 9549 

Table 3 

(Pound sterling): Unemployment compensation in UK. 

Year 2001 2002 2003 2004 2005 2006 2007 2009 2010 2011 2012 2013 2014 2015 

ω 2759 2805 2842 2894 2922 2987 3076 3344 3403 3510 3692 3728 3765 3801 

Data resource: https://stats.oecd.org/Index.aspx?DataSetCode=FIXINCLSA 

Table 4 

(Pound sterling): Observed 

and theoretical values of av- 

erage income of households. 

Year x̄ obs x̄ theory 

2001 16569 17475 

2002 16816 17725 

2003 17039 17916 

2004 17720 18463 

2005 18675 19439 

2006 19346 20325 

2007 20157 21358 

2009 21408 22415 

2010 21273 22261 

2011 22470 23468 

2012 23173 24388 

2013 24094 25410 

2014 24634 25809 

2015 25520 26841 
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 max , where x max denotes the maximum income of low and middle 

lasses. 

Thus, the theoretical average income x̄ theory can be computed 

s: 

¯
 theory = 

x max ∫ 
μ

1 

θ
e 

−( x −μ) 
θ xdx = μ + θ − ( x max + θ ) e 

−( x max −μ) 
θ , (A.29) 

here θ is obtained by fitting the Boltzmann-like distribution to 

eal household income data. Therefore, we can test Eq. (A.29) to 

alidate θ . 

Because the household income data of the United Kingdom con- 

ains 99 quantile: x 1 < x 2 < . . . < x 99 , we can depict them as a his-

ogram and apply the weighted average to estimate the observed 

verage income x̄ obs ; that is, 

¯
 obs ≈

x m + x m +1 

2 
+ 

x m +1 + x m +2 

2 
+ . . . + 

x 95 + x 96 

2 

99 

, (A.30) 

here x m 

≥ μ and x 96 = x max . 

Using the available data for the United Kingdom, we obtain 

able 4 . If the Boltzmann-like distribution exactly describes the 

ow and middle classes, we should have: 

¯
 theory = x̄ obs . (A.31) 

Using Table 4 , we obtain the fitting result: 

¯
 theory = 1 . 051 · x̄ obs − 32 . 24 (A.32) 
9 
e = ( 0 . 01 ) ( 207 . 58 ) R 

2 = 0 . 999 

 = ( 105 . 57 ) ( −0 . 15 ) 

 value = 

(
10 

−19 
)

( 0 . 88 ) 

Since the p value associated with the intercept −32 . 24 of 

q. (A.32) is equal to 0.88, it is not significant and we cannot re- 

ect the null hypothesis that the intercept is zero. Given the high 

 

2 value, we conclude that Eq. (A.31) is supported by the data. 
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