Analogues: Simplified Version Management

Jon Boone
Drexel University
jab545@drexel.edu

6/08/16

ABSTRACT

Version management is a black-art. Developers (and the
occasional power-user) use little-understood, and extremely
complicated Version Control Systems (VCSs) to manage
their important artifacts. Meanwhile, other users are left
behind, resorting to ad-hoc versioning or, worse, no
versioning at all.

I envision a simplified interface to one of the most popular
VCSs (git) which will enable the normal user to begin using
systematic versioning with their artifacts. By presenting the
user with the most important versioning capabilities via an
extremely simple user interface, the goal of enabling users to
adopt systematic versioning is achieved.

Author Keywords
Version Control; Minimal UL

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous. D.2.7 Distribution, Maintenance, and
Enhancement: Version Control.

INTRODUCTION

Computing environments have progressed significantly
since the early days of computing. Yet, one thing that has
been lost in the progress is a simple way of maintaining
multiple versions of a document. Forty to fifty years ago,
operating systems (of which TENEX][1] for the DEC PDP-
10 and TOPS-20[8] for the DECSYSTEM-20 are two
examples), included versioning filesystems which
automatically provided this functionality to some degree.
As modern operating systems have evolved toward
compatibility with UNIX™ and subsequently the POSIX
standard, this feature has largely been dropped, although
there are efforts to revive it such as PeriFS[11].

The result is that file versioning has become the province of
programmers and the occasional power-user. As the target

Paste the appropriate copyright/license statement here. ACM now supports
three different publication options:
* ACM copyright: ACM holds the copyright on the work. This is the
historical approach.
* License: The author(s) retain copyright, but ACM receives an
exclusive publication license.
* Open Access: The author(s) wish to pay for the work to be open
access. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement
assuming it is single-spaced in TimesNewRoman 8 point font. Please do
not change or modify the size of this text box.
Every submission will be assigned their own unique DOI string to be
included here.

audience of the feature has shifted, so too has the feature set.
Indeed, modern Version Control Systems (VCSs) provide so
many features that it is difficult to consider a simple
numbering scheme to track different versions of a file as a
legitimate attempt at providing version control.

Analogues provides a simplified user interface to a popular
VCS called git[4], exposing only the most commonly needed
features, while maintaining compatibility with git itself.
Like the filesystem versioning systems of old, the user of
Analogues is shielded from the conceptual baggage that
accompanies using such a powerful tool. The simple user
interface enables a simple conceptual framework related to
file versioning, not too dissimilar to that which is frequently
used by non-power-users today.

RELATED WORK

Many papers have been published on VCS systems, though
most of these tend to be focused on the programmer-as-user
community. Since Analogues is not meant for programmers,
many of the papers on version control are not directly
relevant.

One particularly interesting paper by Coakley[2] introduces
the idea of revision control to Microsoft Word documents.
While the authors go to great lengths to make revision
control accessible to the same user community that
Analogues targets, their approach is to provide a similar
mechanism as provided by git to the the target user
community, coupled with a somewhat easier interface.
Unfortunately, the approach does little to nothing to hide the
more complex concepts of version control such as branching
and merging. In contrast, Analogues attempts to remove the
necessity of exposing these concepts to the user by not
providing the branching and merging features.

There is some additional system work that has been done
recently to add some features of version control back into
modern operating systems for use by non-programmers, as
well as enabling programmers themselves to use git in a more
user-friendly manner. I choose to highlight two works in
particular due to the similarity with Analogues.

Versions (Mac OS X 10.7+)

With the introduction of Mac OS X 10.7, colloquially known
as OS X Lion, Apple introduced a versioning system called
Versions[10]. With an interface similar to their Time
Machine program for backup management, Versions
allowed the user to visualize prior versions of a file that were
available. This visual metaphor of a time-line, familiar to so

many people, shows that Versions was targeted at a similar
user-base as Analogues.

Unlike Analogues, however, there did not appear to be a
convenient way to store metadata related to each specific
version that was readily available to the user. Similarly,
unlike a true versioning filesystem, in Versions it was
necessary for the user to specifically select to “Save a
Version” — a feat which could only be accomplished if the
application developer had integrated the proper framework
to support this feature. Apparently, this was an uncommon
choice for application developers, as the feature appears to
have been removed from subsequent releases of Mac OS X.
The only remaining documentation on it appears to be a
support knowledgebase document on Apple’s website.

Gitless

Another relevant work is an open-source program called
Gitless. A self-described experimental VCS[5], it attempts
to lower the conceptual burden on programmers, while
maintaining the majority of features that programmers need.
Started in July of 2013, with pre-release 0.0, it has progressed
to pre-release 0.8.2 as of September of 2015[6]. Even with
the reduced conceptual burden provided by Gitless, the sheer
number of features supported makes learning this system
daunting for a non-power-user (and perhaps a number of
power-users as well).

Despite the conceptual similarity and approach of Gitless to
Analogues, the target user-base is dissimilar enough from
that of Analogues to warrant Gitless as not suitable for the
non-power-user. Gitless is primarily a command-line
interface “porcelain” over git, while Analogues is a GUI-
focused application which makes use of the common desktop
filesystem interface metaphor.

ANALOGUES: SYSTEM IMPLEMENTATION

System Design

Analogues was developed in phases. Initially I created a
design specification, which included identifying the target
audience and laying out the conceptual, semantic level and
syntactic level models. It was during this phase that the key
goal of simplification of version management was identified
and refined.

Of particular importance was keeping the conceptual model
as simple as possible. This meant sacrificing powerful
features of common VCSs in order to stay true to the primary
goal. Two important and powerful features that were
identified as out of scope for the approach were branching
and merging of branches, as these are frequently used — and
just as frequently poorly understood — by many
programmers. Resolving merge conflicts, which must be
done by hand in many cases, is something that even
sophisticated developers find challenging; to force this upon
the target user base of Analogues would be inappropriate.

& Anclogues | Filit

double-click to edit

Figure 1: Initial Startup Screen - Low-Fidelity Prototype

The next phase involved creation of a low-fidelity prototype
and the heuristic evaluation of that prototype. Using a
prototyping tool called Balsamiq, I was able to create the
prototype which allowed me to indicate what user interface
elements would be present, as well as to provide a structured
“walk-through” of how Analogues would potentially be used
by a first-time user. The subsequent heuristic evaluation of
the prototype further cemented my commitment to keeping
things simple — from which concepts to expose, all the way
to how to enable the execution of actions.

Figure 1 illustrates that the low-fidelity prototype’s initial
launch screen is clear of unnecessary clutter and provides
only the minimum necessary actions to the user on the easily
anticipated “File” menu. Figure 2 illustrates that the high-
fidelity prototype’s initial launch screen is similar, but
establishes two visual fields of reference which are
consistently presented throughout the use of Analogues.

[] [] Analogues

Figure 2: Initial Startup Screen - High-Fidelity Prototype

Another key decision point informed by this phase was the
choice of implementation language(s) and targeted
platforms. Because I feel strongly that version control for
non-power-users is important, I wanted to have the
versatility to support Windows, Mac OS X and Linux, to
whatever extent possible. Choosing Java as the
implementation language would have provided a consistent
user-interface across all of the targeted platforms, but at the
cost of not truly appearing native on any of them.

However, by choosing web technologies and the right
frameworks, it became possible to readily support two of the
three platforms with native look and feel on both.
Correspondingly, Analogues is written in
Javascript/HTML/CSS. By virtue of being developed using
these technologies, the same code can run on all three of the
target platforms. The sole pre-development dependencies
are version 6.2.0 of node.js, which includes the
corresponding version 3.8.9 of npm (the package
management system for node.js) and a text editor.

To achieve the desired native look and feel, however, it was
necessary to leverage an application framework called
Electron. Electron is an open-source project that is
maintained by GitHub that was originally used to create the
open-source editor Atom[3]. It uses the Chromium open-
source browser implementation to provide native look-and-
feel windowing capabilities, while being completely
controllable by Javascript[3]. This is conceptually the same
as targeting one browser that runs on all of the targeted
platforms and leveraging standard web technologies.

Most of Analogues runs in front-end Javascripts, including
the interactions with the local filesystem for version
repository maintenance. On the back-end, native menus and
application control is provided by a node.js process that runs
for the life of the application. Electron provides limited
direct manipulation of the front-end by the back-end and vice
versa, but for complicated interactions the recommended
approach is to open a socket between the two and
communicate over a custom protocol.

Git compatible repositories that store versioning information
are made possible by the use of the libgit2 Node.js language
bindings called node-git[9]. Created by GitHub, libgit2 is
capable of being leveraged in nearly any programming
language via provided language bindings — or as a Foreign
Function Interface (FFI) to the library, which is written in
C[7].

Analogues makes use of an application specific directory
hierarchy ($HOME/.analogues) in which it stores the
repositories of the files which are being managed. When first
run, Analogues creates the repository directory hierarchy
root and configures the minimal necessary git configuration
values (user.name and user.email), if they are not already
specified in the user’s SHOME/ gitconfig file.

To add a file to versioning, Analogues creates a repository
under SHOME/.analogues that ends in the name of the file.

Inside this repository are stored various git-related files, as
well as a file that stores the original path to the versioned file.
At the time of this writing, directory hierarchies are not
supported in Analogues, so each file added must have a
unique name when the directory hierarchy has been stripped
off.

Use of the System

Analogues allows the user to perform only five actions
related to versioning: 1) add a file to versioning, 2) increase
the version number of the selected file, 3) substitute a prior
version of the selected file for the current version, 4) rename
the selected file and 5) remove the selected file from
versioning. At the time of this writing only 1), 2), and 5) are
implemented.

The most fundamental use of Analogues involves adding a
file to versioning, which can be accomplished by selecting
the appropriate option from the “File” menu — or its
accompanying keyboard accelerator. Figure 3 illustrates
how the user is presented with a traditional “file navigation”
dialog box which allows them to select one file to add.

[] Analogues

o < w =0 =

jab545-a2 B [} a
B Fovorites 2016-A2.pdf @ © GBN.html °
| |
& iCloud Drive a2 CoC img or -
#; Applications azzip ° Sl MLLhtm| °
X . &
Lo
&5 Desktop ¢ PartOne.html °
8 [$ Documents & projects.css]
B © pownloads ¢ Projects.html ©
B 23 Dropbox @) RALhtml °
L i € VMM.html °
B 2 Google Drive PartOne.css
13} ipmonger

iR B voves 2016-05-15
s 05~

¥ [Music

¢ 2016-05-15
@ Pictures 2016-05-15
Devices faa s
[Jon's MacBook
@ Remote Disc

E] Media =

Cancel Add

I

Figure 3: Selecting a File to Add

[] [] Analogues

PartOne.css
Version #1
6/6/2016 9:28:41 AM

initial version of
PartOne.css for CS 530
assignment 02

Figure 4: PartOne.css Added

Figure 4 is a picture from the prototype that shows the result
of adding one file --- PartOne.css — into the repository. The
detail-view on the right include the version number as well
as the version comment.

To demonstrate the git compatibility, Figure 5 is a picture
demonstrating the use of the command-line git utility to
examine the resulting repository from adding “PartOne.css”
to the repository. It shows that the initial repository commit
has been successfully created and meta-data in the form of
the version message has been stored along with it to
document unique features of this version of the file.

Figure 6 shows the alert displayed to the user when a selected
file is chosen for removal from versioning, which completely
removes the version history as well as the file itself from the
application specific directory hierarchy.

Figure 5: Git command line usage

[] Analogues

Really delete this file from versioning?

Ql

o

b
ves | ETIEN M
il
PartOne.css
Version #1
6/6/2016 9:28:41 AM

initial version of
PartOne.css for CS 530
assignment 02

Figure 6: File removal alert dialog

EVALUATION

The targeted user-base for Analogues typically either does
nothing to save differing versions of the files they create, or
uses a system reminiscent of that provided by a versioning
file system — the document name has the current version
embedded into it. Analogues supports versioning without
this embedding the version number in the name of the file
which allows file names to be more generally useful for the
user, while also allowing for larger numbers of revisions than
were typically provided by versioning file systems, since no
portion of the filename is reserved for the version number.

Analogues also provides one additional feature not typically
available in a versioning file system, but which I anticipate
will be well received by the target user-base — the addition of
metadata support related to the rationale for the change. By
providing a free-form text input to provide this rationale,
users are encouraged to provide as much (or as little)
information as they deem necessary to describe the important
differences in the versions of their files.

Participants

In order to effectively evaluate Analogues, it is necessary to
select evaluation participants from a range of ages and levels
of computer sophistication. However, since Analogues is not
targeted for computer programmers or power-users, it is
equally important to ensure that the evaluation users do not
fall into that category, out of a concern for bias. Power-users
and programmers are more likely to be biased against
Analogues as too simplistic and missing important powerful
features, as well as being more likely to easily pick up on the
concepts and workflows associated with Analogues.

Procedure

I chose three school-age children from 12-16 and one adult
in the 40-60 age range as participants in the evaluation. None
of them was a computer programmer or had any prior
experience with a VCS. All were facile with basic computer
operations using the standard desktop metaphors.

I provided them with a working prototype of Analogues,
running on a Macbook, and a task set to accomplish. The
task set involved creating revisions of a provided document
and manipulating those revisions within Analogues. The
provided document was a template document with Lorem
Ipsum text.

In order to determine the ease with which an evaluation user
is able to acclimate to using Analogues, a survey was
provided via surveymoz.com.

Results

The core of the survey consisted of the following 6 questions,
scaled on a range of 1-5 with 1 being most negative, 3 being
neutral, and 5 being the most positive:

1. Did the user understand the purpose of Analogues?
Did the user find it difficult to make use of
Analogues for the purpose as they understood it?

3. Were the options for manipulating files clearly
indicated?

4. Were the menu items labeled in a clear manner?

5. Did the user feel that they understood how
Analogues worked?

6. Would the user be willing to modify their workflow
in order to accommodate the use of Analogues for
important documents?

The results are captured in Table 1 (analysis courtesy of
surveymoz.com).

Question | Mean Variance | Std. Dev. | Std. Err.
1 3.75 0.19 0.43 0.22

2 3 1 1 0.5

3 2.75 0.69 0.83 0.41

4 4 0.5 0.71 0.35

5 3.5 0.75 0.87 0.43

6 4 0.5 0.71 0.35

Table 1: Survey Results

The results clearly indicate that, while the overall reception
to Analogues was positive, there was more work necessary
to make the program easy to use. In particular, observation
of the evaluation users indicated that the implementation of
the desktop metaphor was incomplete and that this caused
some confusion on the part of the evaluators. Common
options like right-clicking, drag-and-drop and selecting and
deleting were attempted by multiple evaluators prior to
choosing to utilize the menus on the task bar. The positive

reception that evaluation users gave to the notion of using
Analogues to version their important documents encourages
further development of this project.

CONCLUSIONS

The Analogues prototype evaluation indicates that this is an
excellent idea, although the current implementation is
lacking in many respects. Chief among those is an
explanation of what the purpose of Analogues is and a walk-
through of how to use it. The use of node-git provides an
“upgrade” path to users who later want to tackle the
challenges of learning the git VCS.

Future Work

In the future, Analogues can be extended by improving the
desktop metaphor implementation and providing a walk-
through scenario upon startup. Labelling of menu items can
also be improved to further clarify how to achieve the user’s
goal.

REFERENCES

1. Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., and
Tomlinson, R.S. TENEX, A Paged Time Sharing System
For The PDP-10. BBN Report Number 2180. (1971).

2. Coakley, Stephen M., Mischka, Jacob, and Thao,
Cheng. Version-Aware Word Documents. DChanges
’14: Proc. 2™ Int. Wkshp. on Changes (2014).

3. Electron web site. http://electron.atom.io. Accessed:
2016-06-05.

4. Git web site. https://git-scm.com. Accessed: 2016-05-
26.

5. Gitless: a version control system. http://gitless.com.
Accessed: 2016-05-26.

6. Gitless source code repository on GitHub.
https://github.com/sdg-mit/gitless/releases.
2016-05-26.

7. Libgit2 web site. https:/libgit2.github.com. Accessed:
2016-06-05.

8. Murphy, Dan. Origins and Development of TOPS-20.
http://tenex.opost.com/hbook.html. Accessed: 2016-05-
26.

9. NodeGit web site. http://www.nodegit.org. Accessed:
2016-06-05.

10.0S X Lion: About Auto Save and Versions.
https://support.apple.com/en-us/HT202255. Accessed:
2016-05-26.

11.Ports, Dan R. K., Clements, Austin T., and Demaine,
Erik D. PersiFS: A Versioned File System with an
Efficient Representation. Proc. SOSP °05 (2005).

Accessed:

