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Abstract
Generative adversarial networks are a kind of artificial intel-
ligence algorithm designed to solve the generative model-
ing problem. The goal of a generative model is to study a 
collection of training examples and learn the probability 
distribution that generated them. Generative Adversarial 
Networks (GANs) are then able to generate more examples 
from the estimated probability distribution. Generative 
models based on deep learning are common, but GANs 
are among the most successful generative models (espe-
cially in terms of their ability to generate realistic high-
resolution images). GANs have been successfully applied 
to a wide variety of tasks (mostly in research settings) but 
continue to present unique challenges and research 
opportunities because they are based on game theory 
while most other approaches to generative modeling are 
based on optimization.

1. INTRODUCTION
Most current approaches to developing artificial intelli-
gence are based primarily on machine learning. The most 
widely used and successful form of machine learning to date 
is supervised learning. Supervised learning algorithms are 
given a dataset of pairs of example inputs and example out-
puts. They learn to associate each input with each output 
and thus learning a mapping from input to output exam-
ples. The input examples are typically complicated data 
objects like images, natural language sentences, or audio 
waveforms, while the output examples are often relatively 
simple. The most common kind of supervised learning is 
classification, where the output is just an integer code iden-
tifying a specific category (a photo might be recognized as 
coming from category 0 containing cats, or category 1 con-
taining dogs, etc.).

Supervised learning is often able to achieve greater than 
human accuracy after the training process is complete, and 
thus has been integrated into many products and services. 
Unfortunately, the learning process itself still falls far short 
of human abilities. Supervised learning by definition relies 
on a human supervisor to provide an output example for 
each input example. Worse, existing approaches to super-
vised learning often require millions of training examples to 
exceed human performance, when a human might be able 
to learn to perform the task acceptably from a very small 
number of examples.

In order to reduce both the amount of human supervi-
sion required for learning and the number of examples 
required for learning, many researchers today study 
unsupervised learning, often using generative models. In 
this overview paper, we describe one particular approach 
to unsupervised learning via generative modeling called 
generative adversarial networks. We briefly review 

The original version of this paper is entitled “Generative 
Adversarial Networks” and was published in Advances in 
Neural Information Processing Systems 27 (NIPS 2014).

applications of GANs and identify core research problems 
related to convergence in games necessary to make GANs a 
reliable technology.

2. GENERATIVE MODELING
The goal of supervised learning is relatively straightforward 
to specify, and all supervised learning algorithms have 
essentially the same goal: learn to accurately associate new 
input examples with the correct outputs. For instance, an 
object recognition algorithm may associate a photo of a dog 
with some kind of DOG category identifier.

Unsupervised learning is a less clearly defined branch of 
machine learning, with many different unsupervised learn-
ing algorithms pursuing many different goals. Broadly 
speaking, the goal of unsupervised learning is to learn some-
thing useful by examining a dataset containing unlabeled 
input examples. Clustering and dimensionality reduction 
are common examples of unsupervised learning.

Another approach to unsupervised learning is generative 
modeling. In generative modeling, training examples x are 
drawn from an unknown distribution pdata(x). The goal of a 
generative modeling algorithm is to learn a pmodel(x) that 
approximates pdata(x) as closely as possible.

A straightforward way to learn an approximation of pdata is 
to explicitly write a function pmodel(x; θ) controlled by param-
eters θ and search for the value of the parameters that makes 
pdata and pmodel as similar as possible. In particular, the most 
popular approach to generative modeling is probably maxi-
mum likelihood estimation, consisting of minimizing the 
Kullback-Leibler divergence between pdata and pmodel. The 
common approach of estimating the mean parameter of a 
Gaussian distribution by taking the mean of a set of observa-
tions is one example of maximum likelihood estimation. 
This approach based on explicit density functions is illus-
trated in Figure 1.

Explicit density modeling has worked well for traditional 
statistics, using simple functional forms of probability dis-
tributions, usually applied to small numbers of variables. 
More recently, with the rise of machine learning in general 
and deep learning in particular, researchers have become 
interested in learning models that make use of relatively 
complicated functional forms. When a deep neural net-
work is used to generate data, the corresponding density 
function may be computationally intractable. 
Traditionally, there have been two dominant approaches 
to confronting this intractability problem: (1) carefully 
design the model to have a tractable density function 
(e.g., Frey11) and (2) design a learning algorithm based on 
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a computationally tractable approximation of an intractable 
density function (e.g., Kingma and Welling15). Both approaches 
have proved difficult, and for many applications, such as gen-
erating realistic high resolution images, researchers remain 
unsatisfied with the results so far. This motivates further 
research to improve these two paths, but also suggests that a 
third path could be useful.

Besides taking a point x as input and returning an esti-
mate of the probability of generating that point, a generative 
model can be useful if it is able to generate a sample from 
the distribution pmodel. This is illustrated in Figure 2. Many 
models that represent a density function can also generate 
samples from that density function. In some cases, generat-
ing samples is very expensive or only approximate methods 
of generating samples are tractable.

Some generative models avoid the entire issue of design-
ing a tractable density function and learn only a tractable 
sample generation process. These are called implicit genera-
tive models. GANs fall into this category. Prior to the intro-
duction of GANs, the state of the art deep implicit generative 
model was the generative stochastic network4 which is capa-
ble of approximately generating samples via an incremental 
process based on Markov chains. GANs were introduced in 
order to create a deep implicit generative model that was 
able to generate true samples from the model distribution 
in a single generation step, without need for the incremen-
tal generation process or approximate nature of sampling 
Markov chains.

Today, the most popular approaches to generative mod-
eling are probably GANs, variational autoencoders,15 and 
fully-visible belief nets (e.g., Frey11, 26). None of these 
approaches relies on Markov chains, so the reason for the 
interest in GANs today is not that they succeeded at their 
original goal of generative modeling without Markov chains, 
but rather that they have succeded in generating high-qual-
ity images and have proven useful for several tasks other 
than straightforward generation, as described in Section 5.

3. GENERATIVE ADVERSARIAL NETWORKS
Generative adversarial networks are based on a game, in the 
sense of game theory, between two machine learning models, 
typically implemented using neural networks.

One network called the generator defines pmodel(x) implic-
itly. The generator is not necessarily able to evaluate the den-
sity function pmodel. For some variants of GANs, evaluation of 
the density function is possible (any tractable density model 
for which sampling is tractable and differntiable could 
be trained as a GAN generator, as done by Danihelka  

Learned
model

Training data

Generated samples

Figure 2. The goal of many generative models, as illustrated 
here, is to study a collection of training examples, then learn to 
generate more examples that come from the same probability 
distribution. GANs learn to do this without using an explicit 
representation of the density function. One advantage of the 
GAN framework is that it may be applied to models for which the 
density function is computationally intractable. The samples 
shown here are all samples from the ImageNet dataset,8 
including the ones labeled “model samples.” We use actual 
ImageNet data to illustrate the goal that a hypothetical perfect 
model would attain.

x

p(
x)

Figure 1. Many approaches to generative modeling are based 
on density estimation: observing several training examples of 
a random variable x and inferring a density function p(x) that 
generates the training data. This approach is illustrated here, 
with several data points on a real number line used to fit a 
Gaussian density function that explains the observed samples. 
In contrast to this common approach, GANs are implicit models 
that infer the probability distribution p(x) without necessarily 
representing the density function explicitly.
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et al.6), but this is not required. Instead, the generator is 
able to draw samples from the distribution pmodel. The gen-
erator is defined by a prior distribution p(z) over a vector z 
that serves as input to the generator function G(z; θ(G)) where 
θ(G) is a set of learnable parameters defining the generator’s 
strategy in the game. The input vector z can be thought of as 
a source of randomness in an otherwise deterministic sys-
tem, analogous to the seed of pseudorandom number gen-
erator. The prior distribution p(z) is typically a relatively 
unstructured distribution, such as a high-dimensional 
Gaussian distribution or a uniform distribution over a 
hypercube. Samples z from this distribution are then just 
noise. The main role of the generator is to learn the func-
tion G(z) that transforms such unstructured noise z into 
realistic samples.

The other player in this game is the discriminator. The 
discriminator examines samples x and returns some esti-
mate D(x; θ(D)) of whether x is real (drawn from the training 
distribution) or fake (drawn from pmodel by running the gen-
erator). In the original formulation of GANs, this estimate 
consists of a probability that the input is real rather than 
fake assuming that the real distribution and fake distribu-
tion are sampled equally often. Other formulations (e.g., 
Arjovsky et al.1) exist but generally speaking, at the level of 
verbal, intuitive descriptions, the discriminator tries to pre-
dict whether the input was real or fake.

Each player incurs a cost: J(G)(θ(G), θ(D)) for the generator 
and J (D)(θ(G), θ(D)) for the discriminator. Each player attempts 
to minimize its own cost. Roughly speaking, the discrimina-
tor’s cost encourages it to correctly classify data as real or 
fake, while the generator’s cost encourages it to generate 
samples that the discriminator incorrectly classifies as real. 
Very many different specific formulations of these costs are 
possible and so far most popular formulations seem to per-
form roughly the same.18 In the original version of  
GANs, J(D) was defined to be the negative log-likelihood that 
the discriminator assigns to the real-vs-fake labels given the 
input to the discriminator. In other words, the discriminator 
is trained just like a regular binary classifier. The original 
work on GANs offered two versions of the cost for the gener-
ator. One version, today called minimax GAN (M-GAN) 
defined a cost J (G) = −J (D), yielding a minimax game that is 
straightforward to analyze theoretically. M-GAN defines the 
cost for the generator by flipping the sign of the discrimina-
tor’s cost; another approach is the non-saturating GAN 
(NS-GAN), for which the generator’s cost is defined by flip-
ping the discriminator’s labels. In other words, the genera-
tor is tried to minimize the negative log-likelihood that the 
discriminator assigns to the wrong labels. The later helps to 
avoid gradient saturation while training the model.

We can think of GANs as a bit like counterfeiters and 
police: the counterfeiters make fake money while the 
police try to arrest counterfeiters and continue to allow 
the spending of legitimate money. Competition between 
counterfeiters and police leads to more and more realistic 
counterfeit money until eventually the counterfeiters pro-
duce perfect fakes and the police cannot tell the difference 
between real and fake money. One complication to this 
analogy is that the generator learns via the discriminator’s 
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Figure 3. Training GANs involves training both a generator network 
and a discriminator network. The process involves both real data 
drawn from a dataset and fake data created continuously by the 
generator throughout the training process. The discriminator is 
trained much like any other classifier defined by a deep neural 
network. As shown on the left, the discriminator is shown data 
from the training set. In this case, the discriminator is trained to 
assign data to the “real” class. As shown on the right, the training 
process also involves fake data. The fake data is constructed by first 
sampling a random vector z from a prior distribution over latent 
variables of the model. The generator is then used to to produce a 
sample x = G(z). The function G is simply a function represented by a 
neural network that transforms the random, unstructured z vector 
into structured data, intended to be statistically indistinguishable 
from the training data. The discriminator then classifies this fake 
data. The discriminator is trained to assign this data to the “fake” 
class. The backpropagation algorithm makes it possible to use 
the derivatives of the discriminator’s output with respect to the 
discriminator’s input to train the generator. The generator is trained 
to fool the discriminator, in other words, to make the discriminator 
assign its input to the “real” class. The training process for the 
discriminator is thus much the same as for any other binary 
classifier with the exception that the data for the “fake” class comes 
from a distribution that changes constantly as the generator learns 
rather than from a fixed distribution. The learning process for the 
generator is somewhat unique, because it is not given specific 
targets for its output, but rather simply given a reward for producing 
outputs that fool its (constantly changing) opponent.

gradient, as if the counterfeiters have a mole among the 
police reporting the specific methods that the police use 
to detect fakes.

This process is illustrated in Figure 3. Figure 4 shows a 
cartoon giving some intution for how the process works.
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as demonstrated by Metz et al.,22 but the argmin operation is 
difficult to work with in this way. The most popular approach 
is to regard this situation as a game between two players. 
Much of the game theory literature is concerned with games 
that have discrete and finite action spaces, convex losses, or 
other properties simplifying them. GANs require use of 
game theory in settings that are not yet well-explored, where 
the costs are non-convex and the actions and policies are 
continuous and high-dimensional (regardless of whether 
we consider an action to be choosing a specific parameter 
vector θ(G) or whether we consider the action to be generating 
a sample x). The goal of a machine learning algorithm in this 
context is to find a local Nash equilibrium28: a point that is a 
local minimum of each player’s cost with respect to that 
player’s parameters. With local moves, no player can reduce 
its cost further, assuming the other player’s parameters do 
not change.

The most common training algorithm is simply to use a 
gradient-based optimizer to repeatedly take simultaneous 
steps on both players, incrementally minimizing each play-
er’s cost with respect to that player’s parameters.

At the end of the training process, GANs are often able to 
produce realistic samples, even for very complicated datas-
ets containing high-resolution images. An example is shown 
in Figure 5.

At a high level, one reason that the GAN framework is suc-
cesful may be that it involves very little approximation. Many 
other approaches to generative modeling must approximate 
an intractable density functions. GANs do not involve any 

The situation is not straightforward to model as an opti-
mization problem because each player’s cost is a function of 
the other player’s parameters, but each player may control 
only its own parameters. It is possible to reduce the situa-
tion to optimization, where the goal is to minimize
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Figure 4. An illustration of the basic intuition behind the 
GAN training process, illustrated by fitting a 1-D Gaussian 
distribution. In this example, we can understand the goal of the 
generator as learning a simple scaling of the inverse cumulative 
distribution function of the data generating distribution. GANs 
are trained by simultaneously updating the discriminator 
function (D, blue, dashed line) so that it discriminates between 
samples from the data generating distribution (black, dotted 
line) px from those of the generative distribution pmodel (green, 
solid line). The lower horizontal line is the domain from which 
z is sampled, in this case uniformly. The horizontal line above 
is part of the domain of x. The upward arrows show how the 
mapping x = G(z) imposes the non-uniform distribution pmodel on 
transformed samples. G contracts in regions of high density 
and expands in regions of low density of pmodel. (a) Consider a 
pair of adversarial networks at initialization: pmodel is initialized 
to a unit Gaussian for this example while D is defined by a 
randomly initialized deep neural network. (b) Suppose that 
D were trained to convergence while G were held fixed. In 
practice, both are trained simultaneously, but for the purpose of 
building intuition, we see that if G were fixed, D would converge 
to . (c) Now suppose that we gradually train 
both G and D for a while. The samples x generated by G flow in 
the direction of increasing D in order to arrive at regions that 
are more likely to be classified as data. Meanwhile the estimate 
of D is updated in response to this update in G. (d) At the Nash 
equilibrium, neither player can improve its payoff because pmodel 
= pdata. The discriminator is unable to differentiate between 
the two distributions, that is, . This constant function 
shows that all points are equally likely to have come from either 
distribution. In practice, G and D are typically optimized with 
simultaneous gradient steps, and it is not necessary for D to 
be optimal at every step as shown in this intuitive cartoon. See 
Refs. Fedus et al.10 and Nagarajan and Kolter24 for more realistic 
discussions of the GAN equilibration process.

Figure 5. This image is a sample from a Progressive GAN14 depicting 
a person who does not exist but was “imagined” by a GAN after 
training on photos of celebrities.
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spurious Nash equilibria exist,32 whether the learning algo-
rithm converges to a Nash equilibrium,24 and if it does so, 
how quickly.21

In many cases of practical interest, these theoretical 
questions are open, and the best learning algorithms seem 
empirically to often fail to converge. Theoretical work to 
answer these questions is ongoing, as is work to design bet-
ter costs, models, and training algorithms with better con-
vergence properties.

5. OTHER GAN TOPICS
This article is focused on a summary of the core design con-
siderations and algorithmic properties of GANs.

Many other topics of potential interest cannot be consid-
ered here due to space consideration. This article discussed 
using GANs to approximate a distribution p(x) they have also 
been extended to the conditional setting23, 25 where they gen-
erate samples corresponding to some input by drawing sam-
ples from the conditional distribution p(x | y). GANs are 
related to moment matching16 and optimal transport.1 A 
quirk of GANs that is made especially clear through their 
connection to MMD and optimal transport is that they may 
be used to train generative models for which pmodel has sup-
port only on a thin manifold and may actually assign zero 
likelihood to the training data. GANs struggle to generate 
discrete data because the back-propagation algorithm 
needs to propagate gradients from the discriminator 
through the output of the generator, but this problem is 
being gradually resolved.9 Like most generative models, 
GANs can be used to fill in gaps in missing data.34 GANs have 
proven very effective for learning to classify data using very 
few labeled training examples.29 Evaluating the performance 
of generative models including GANs is a difficult research 
area in its own right.29, 31, 32, 33 GANs can be seen as a way for 
machine learning to learn its own cost function, rather than 
minimizing a hand-designed cost function. GANs can be 
seen as a way of supervising machine learning by asking it to 

approximation to their true underlying task. The only real 
error is the statistical error (sampling of a finite amount of 
training data rather than measuring the true underlying 
data-generating distribution) and failure of the learning 
algorithm to converge to exactly the optimal parameters. 
Many generative modeling strategies would introduce these 
sources of error and also further sources of approximation 
error, based on Markov chains, optimization of bounds on 
the true cost rather than the cost itself, etc.

It is difficult to give much further specific guidance regard-
ing the details of GANs because GANs are such an active 
research area and most specific advice quickly becomes out 
of date. Figure 6 shows how quickly the capabilities of GANs 
have progressed in the years since their introduction.

4. CONVERGENCE OF GANS
The central theoretical results presented in the original GAN 
paper13 were that:

1.	 in the space of density functions pmodel and discrimina-
tor functions D, there is only one local Nash equilib-
rium, where pmodel = pdata.

2.	 if it were possible to optimize directly over such den-
sity functions, then the algorithm that consists of opti-
mizing D to convergence in the inner loop, then 
making a small gradient step on pmodel in the outer 
loop, converges to this Nash equilibrium.

However, the theoretical model of local moves directly in 
density function space may not be very relevant to GANs as 
they are trained in practice: using local moves in parameter 
space of the generator function, among the set of functions 
representable by neural networks with a finite number of 
parameters, with each parameter represented with a finite 
number of bits.

In many different theoretical models, it is interesting to 
study whether a Nash equilibrium exists,2 whether any 

Figure 6. An illustration of progress in GAN capabilities over the course of approximately three years following the introduction of 
GANs. GANs have rapidly become more capable, due to changes in GAN algorithms, improvements to the underlying deep learning 
algorithms, and improvements to underlying deep learning software and hardware infrastructure. This rapid progress means that  
it is infeasible for any single document to summarize the state-of-the-art GAN capabilities or any specific set of best practices;  
both continue to evolve rapidly enough that any comprehensive survey quickly becomes out of date. Figure reproduced with 
permission from Brundage et al.5 The individual results are from Refs. Goodfellow,13 Karras et al.,14 Liu and Tuzel,17 and  
Radford et al.27 respectively.

2014 2015 2016 2017
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produce any output that the machine learning algorithm 
itself recognizes as acceptable, rather than by asking it to 
produce a specific example output. GANs are thus great for 
learning in situations where there are many possible correct 
answers, such as predicting the many possible futures that 
can happen in video generation.19 GANs and GAN-like mod-
els can be used to learn to transform data from one domain 
into data from another domain, even without any labeled 
pairs of examples from those domains (e.g., Zhu et al.35). For 
example, after studying a collection of photos of zebras and 
a collection of photos of horses, GANs can turn a photo of a 
horse into a photo of a zebra.35 GANs have been used in sci-
ence to simulate experiments that would be costly to run 
even in traditional software simulators.7 GANs can be used 
to create fake data to train other machine learning models, 
either when real data would be hard to acquire30 or when 
there would be privacy concerns associated with real data.3 
GAN-like models called domain-adversarial networks can be 
used for domain adaptation.12 GANs can be used for a variety 
of interactive digital media effects where the end goal is to 
produce compelling imagery.35 GANs can even be used to 
solve variational inference problems used in other 
approaches to generative modeling.20 GANs can learn useful 
embedding vectors and discover concepts like gender of 
human faces without supervision.27

6. CONCLUSION
GANs are a kind of generative model based on game theory. 
They have had great practical success in terms of generating 
realistic data, especially images. It is currently still difficult 
to train them. For GANs to become a more reliable technol-
ogy, it will be necessary to design models, costs, or training 
algorithms for which it is possible to find good Nash equilib-
ria consistently and quickly.�
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