
NOVEMBER 2020 | VOL. 63 | NO. 11 | COMMUNICATIONS OF THE ACM 139

Generative Adversarial Networks
By Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio

DOI:10.1145/3422622

Abstract
Generative adversarial networks are a kind of artificial intel-
ligence algorithm designed to solve the generative model-
ing problem. The goal of a generative model is to study a
collection of training examples and learn the probability
distribution that generated them. Generative Adversarial
Networks (GANs) are then able to generate more examples
from the estimated probability distribution. Generative
models based on deep learning are common, but GANs
are among the most successful generative models (espe-
cially in terms of their ability to generate realistic high-
resolution images). GANs have been successfully applied
to a wide variety of tasks (mostly in research settings) but
continue to present unique challenges and research
opportunities because they are based on game theory
while most other approaches to generative modeling are
based on optimization.

1. INTRODUCTION
Most current approaches to developing artificial intelli-
gence are based primarily on machine learning. The most
widely used and successful form of machine learning to date
is supervised learning. Supervised learning algorithms are
given a dataset of pairs of example inputs and example out-
puts. They learn to associate each input with each output
and thus learning a mapping from input to output exam-
ples. The input examples are typically complicated data
objects like images, natural language sentences, or audio
waveforms, while the output examples are often relatively
simple. The most common kind of supervised learning is
classification, where the output is just an integer code iden-
tifying a specific category (a photo might be recognized as
coming from category 0 containing cats, or category 1 con-
taining dogs, etc.).

Supervised learning is often able to achieve greater than
human accuracy after the training process is complete, and
thus has been integrated into many products and services.
Unfortunately, the learning process itself still falls far short
of human abilities. Supervised learning by definition relies
on a human supervisor to provide an output example for
each input example. Worse, existing approaches to super-
vised learning often require millions of training examples to
exceed human performance, when a human might be able
to learn to perform the task acceptably from a very small
number of examples.

In order to reduce both the amount of human supervi-
sion required for learning and the number of examples
required for learning, many researchers today study
unsupervised learning, often using generative models. In
this overview paper, we describe one particular approach
to unsupervised learning via generative modeling called
generative adversarial networks. We briefly review

The original version of this paper is entitled “Generative
Adversarial Networks” and was published in Advances in
Neural Information Processing Systems 27 (NIPS 2014).

applications of GANs and identify core research problems
related to convergence in games necessary to make GANs a
reliable technology.

2. GENERATIVE MODELING
The goal of supervised learning is relatively straightforward
to specify, and all supervised learning algorithms have
essentially the same goal: learn to accurately associate new
input examples with the correct outputs. For instance, an
object recognition algorithm may associate a photo of a dog
with some kind of DOG category identifier.

Unsupervised learning is a less clearly defined branch of
machine learning, with many different unsupervised learn-
ing algorithms pursuing many different goals. Broadly
speaking, the goal of unsupervised learning is to learn some-
thing useful by examining a dataset containing unlabeled
input examples. Clustering and dimensionality reduction
are common examples of unsupervised learning.

Another approach to unsupervised learning is generative
modeling. In generative modeling, training examples x are
drawn from an unknown distribution pdata(x). The goal of a
generative modeling algorithm is to learn a pmodel(x) that
approximates pdata(x) as closely as possible.

A straightforward way to learn an approximation of pdata is
to explicitly write a function pmodel(x; θ) controlled by param-
eters θ and search for the value of the parameters that makes
pdata and pmodel as similar as possible. In particular, the most
popular approach to generative modeling is probably maxi-
mum likelihood estimation, consisting of minimizing the
Kullback-Leibler divergence between pdata and pmodel. The
common approach of estimating the mean parameter of a
Gaussian distribution by taking the mean of a set of observa-
tions is one example of maximum likelihood estimation.
This approach based on explicit density functions is illus-
trated in Figure 1.

Explicit density modeling has worked well for traditional
statistics, using simple functional forms of probability dis-
tributions, usually applied to small numbers of variables.
More recently, with the rise of machine learning in general
and deep learning in particular, researchers have become
interested in learning models that make use of relatively
complicated functional forms. When a deep neural net-
work is used to generate data, the corresponding density
function may be computationally intractable.
Traditionally, there have been two dominant approaches
to confronting this intractability problem: (1) carefully
design the model to have a tractable density function
(e.g., Frey11) and (2) design a learning algorithm based on

http://dx.doi.org/10.1145/3422622
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3422622&domain=pdf&date_stamp=2020-10-22

research highlights

140 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL. 63 | NO. 11

a computationally tractable approximation of an intractable
density function (e.g., Kingma and Welling15). Both approaches
have proved difficult, and for many applications, such as gen-
erating realistic high resolution images, researchers remain
unsatisfied with the results so far. This motivates further
research to improve these two paths, but also suggests that a
third path could be useful.

Besides taking a point x as input and returning an esti-
mate of the probability of generating that point, a generative
model can be useful if it is able to generate a sample from
the distribution pmodel. This is illustrated in Figure 2. Many
models that represent a density function can also generate
samples from that density function. In some cases, generat-
ing samples is very expensive or only approximate methods
of generating samples are tractable.

Some generative models avoid the entire issue of design-
ing a tractable density function and learn only a tractable
sample generation process. These are called implicit genera-
tive models. GANs fall into this category. Prior to the intro-
duction of GANs, the state of the art deep implicit generative
model was the generative stochastic network4 which is capa-
ble of approximately generating samples via an incremental
process based on Markov chains. GANs were introduced in
order to create a deep implicit generative model that was
able to generate true samples from the model distribution
in a single generation step, without need for the incremen-
tal generation process or approximate nature of sampling
Markov chains.

Today, the most popular approaches to generative mod-
eling are probably GANs, variational autoencoders,15 and
fully-visible belief nets (e.g., Frey11, 26). None of these
approaches relies on Markov chains, so the reason for the
interest in GANs today is not that they succeeded at their
original goal of generative modeling without Markov chains,
but rather that they have succeded in generating high-qual-
ity images and have proven useful for several tasks other
than straightforward generation, as described in Section 5.

3. GENERATIVE ADVERSARIAL NETWORKS
Generative adversarial networks are based on a game, in the
sense of game theory, between two machine learning models,
typically implemented using neural networks.

One network called the generator defines pmodel(x) implic-
itly. The generator is not necessarily able to evaluate the den-
sity function pmodel. For some variants of GANs, evaluation of
the density function is possible (any tractable density model
for which sampling is tractable and differntiable could
be trained as a GAN generator, as done by Danihelka

Learned
model

Training data

Generated samples

Figure 2. The goal of many generative models, as illustrated
here, is to study a collection of training examples, then learn to
generate more examples that come from the same probability
distribution. GANs learn to do this without using an explicit
representation of the density function. One advantage of the
GAN framework is that it may be applied to models for which the
density function is computationally intractable. The samples
shown here are all samples from the ImageNet dataset,8
including the ones labeled “model samples.” We use actual
ImageNet data to illustrate the goal that a hypothetical perfect
model would attain.

x

p(
x)

Figure 1. Many approaches to generative modeling are based
on density estimation: observing several training examples of
a random variable x and inferring a density function p(x) that
generates the training data. This approach is illustrated here,
with several data points on a real number line used to fit a
Gaussian density function that explains the observed samples.
In contrast to this common approach, GANs are implicit models
that infer the probability distribution p(x) without necessarily
representing the density function explicitly.

NOVEMBER 2020 | VOL. 63 | NO. 11 | COMMUNICATIONS OF THE ACM 141

et al.6), but this is not required. Instead, the generator is
able to draw samples from the distribution pmodel. The gen-
erator is defined by a prior distribution p(z) over a vector z
that serves as input to the generator function G(z; θ(G)) where
θ(G) is a set of learnable parameters defining the generator’s
strategy in the game. The input vector z can be thought of as
a source of randomness in an otherwise deterministic sys-
tem, analogous to the seed of pseudorandom number gen-
erator. The prior distribution p(z) is typically a relatively
unstructured distribution, such as a high-dimensional
Gaussian distribution or a uniform distribution over a
hypercube. Samples z from this distribution are then just
noise. The main role of the generator is to learn the func-
tion G(z) that transforms such unstructured noise z into
realistic samples.

The other player in this game is the discriminator. The
discriminator examines samples x and returns some esti-
mate D(x; θ(D)) of whether x is real (drawn from the training
distribution) or fake (drawn from pmodel by running the gen-
erator). In the original formulation of GANs, this estimate
consists of a probability that the input is real rather than
fake assuming that the real distribution and fake distribu-
tion are sampled equally often. Other formulations (e.g.,
Arjovsky et al.1) exist but generally speaking, at the level of
verbal, intuitive descriptions, the discriminator tries to pre-
dict whether the input was real or fake.

Each player incurs a cost: J(G)(θ(G), θ(D)) for the generator
and J (D)(θ(G), θ(D)) for the discriminator. Each player attempts
to minimize its own cost. Roughly speaking, the discrimina-
tor’s cost encourages it to correctly classify data as real or
fake, while the generator’s cost encourages it to generate
samples that the discriminator incorrectly classifies as real.
Very many different specific formulations of these costs are
possible and so far most popular formulations seem to per-
form roughly the same.18 In the original version of
GANs, J(D) was defined to be the negative log-likelihood that
the discriminator assigns to the real-vs-fake labels given the
input to the discriminator. In other words, the discriminator
is trained just like a regular binary classifier. The original
work on GANs offered two versions of the cost for the gener-
ator. One version, today called minimax GAN (M-GAN)
defined a cost J (G) = −J (D), yielding a minimax game that is
straightforward to analyze theoretically. M-GAN defines the
cost for the generator by flipping the sign of the discrimina-
tor’s cost; another approach is the non-saturating GAN
(NS-GAN), for which the generator’s cost is defined by flip-
ping the discriminator’s labels. In other words, the genera-
tor is tried to minimize the negative log-likelihood that the
discriminator assigns to the wrong labels. The later helps to
avoid gradient saturation while training the model.

We can think of GANs as a bit like counterfeiters and
police: the counterfeiters make fake money while the
police try to arrest counterfeiters and continue to allow
the spending of legitimate money. Competition between
counterfeiters and police leads to more and more realistic
counterfeit money until eventually the counterfeiters pro-
duce perfect fakes and the police cannot tell the difference
between real and fake money. One complication to this
analogy is that the generator learns via the discriminator’s

Real data Fake data

Dataset Generator

Random
latent

variable

Random
index into
dataset

Discriminator Discriminator

Figure 3. Training GANs involves training both a generator network
and a discriminator network. The process involves both real data
drawn from a dataset and fake data created continuously by the
generator throughout the training process. The discriminator is
trained much like any other classifier defined by a deep neural
network. As shown on the left, the discriminator is shown data
from the training set. In this case, the discriminator is trained to
assign data to the “real” class. As shown on the right, the training
process also involves fake data. The fake data is constructed by first
sampling a random vector z from a prior distribution over latent
variables of the model. The generator is then used to to produce a
sample x = G(z). The function G is simply a function represented by a
neural network that transforms the random, unstructured z vector
into structured data, intended to be statistically indistinguishable
from the training data. The discriminator then classifies this fake
data. The discriminator is trained to assign this data to the “fake”
class. The backpropagation algorithm makes it possible to use
the derivatives of the discriminator’s output with respect to the
discriminator’s input to train the generator. The generator is trained
to fool the discriminator, in other words, to make the discriminator
assign its input to the “real” class. The training process for the
discriminator is thus much the same as for any other binary
classifier with the exception that the data for the “fake” class comes
from a distribution that changes constantly as the generator learns
rather than from a fixed distribution. The learning process for the
generator is somewhat unique, because it is not given specific
targets for its output, but rather simply given a reward for producing
outputs that fool its (constantly changing) opponent.

gradient, as if the counterfeiters have a mole among the
police reporting the specific methods that the police use
to detect fakes.

This process is illustrated in Figure 3. Figure 4 shows a
cartoon giving some intution for how the process works.

research highlights

142 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL. 63 | NO. 11

as demonstrated by Metz et al.,22 but the argmin operation is
difficult to work with in this way. The most popular approach
is to regard this situation as a game between two players.
Much of the game theory literature is concerned with games
that have discrete and finite action spaces, convex losses, or
other properties simplifying them. GANs require use of
game theory in settings that are not yet well-explored, where
the costs are non-convex and the actions and policies are
continuous and high-dimensional (regardless of whether
we consider an action to be choosing a specific parameter
vector θ(G) or whether we consider the action to be generating
a sample x). The goal of a machine learning algorithm in this
context is to find a local Nash equilibrium28: a point that is a
local minimum of each player’s cost with respect to that
player’s parameters. With local moves, no player can reduce
its cost further, assuming the other player’s parameters do
not change.

The most common training algorithm is simply to use a
gradient-based optimizer to repeatedly take simultaneous
steps on both players, incrementally minimizing each play-
er’s cost with respect to that player’s parameters.

At the end of the training process, GANs are often able to
produce realistic samples, even for very complicated datas-
ets containing high-resolution images. An example is shown
in Figure 5.

At a high level, one reason that the GAN framework is suc-
cesful may be that it involves very little approximation. Many
other approaches to generative modeling must approximate
an intractable density functions. GANs do not involve any

The situation is not straightforward to model as an opti-
mization problem because each player’s cost is a function of
the other player’s parameters, but each player may control
only its own parameters. It is possible to reduce the situa-
tion to optimization, where the goal is to minimize

x

z

x

z

(a)

(c) (d)

(b)

x

z

x

z

Figure 4. An illustration of the basic intuition behind the
GAN training process, illustrated by fitting a 1-D Gaussian
distribution. In this example, we can understand the goal of the
generator as learning a simple scaling of the inverse cumulative
distribution function of the data generating distribution. GANs
are trained by simultaneously updating the discriminator
function (D, blue, dashed line) so that it discriminates between
samples from the data generating distribution (black, dotted
line) px from those of the generative distribution pmodel (green,
solid line). The lower horizontal line is the domain from which
z is sampled, in this case uniformly. The horizontal line above
is part of the domain of x. The upward arrows show how the
mapping x = G(z) imposes the non-uniform distribution pmodel on
transformed samples. G contracts in regions of high density
and expands in regions of low density of pmodel. (a) Consider a
pair of adversarial networks at initialization: pmodel is initialized
to a unit Gaussian for this example while D is defined by a
randomly initialized deep neural network. (b) Suppose that
D were trained to convergence while G were held fixed. In
practice, both are trained simultaneously, but for the purpose of
building intuition, we see that if G were fixed, D would converge
to . (c) Now suppose that we gradually train
both G and D for a while. The samples x generated by G flow in
the direction of increasing D in order to arrive at regions that
are more likely to be classified as data. Meanwhile the estimate
of D is updated in response to this update in G. (d) At the Nash
equilibrium, neither player can improve its payoff because pmodel
= pdata. The discriminator is unable to differentiate between
the two distributions, that is, . This constant function
shows that all points are equally likely to have come from either
distribution. In practice, G and D are typically optimized with
simultaneous gradient steps, and it is not necessary for D to
be optimal at every step as shown in this intuitive cartoon. See
Refs. Fedus et al.10 and Nagarajan and Kolter24 for more realistic
discussions of the GAN equilibration process.

Figure 5. This image is a sample from a Progressive GAN14 depicting
a person who does not exist but was “imagined” by a GAN after
training on photos of celebrities.

NOVEMBER 2020 | VOL. 63 | NO. 11 | COMMUNICATIONS OF THE ACM 143

spurious Nash equilibria exist,32 whether the learning algo-
rithm converges to a Nash equilibrium,24 and if it does so,
how quickly.21

In many cases of practical interest, these theoretical
questions are open, and the best learning algorithms seem
empirically to often fail to converge. Theoretical work to
answer these questions is ongoing, as is work to design bet-
ter costs, models, and training algorithms with better con-
vergence properties.

5. OTHER GAN TOPICS
This article is focused on a summary of the core design con-
siderations and algorithmic properties of GANs.

Many other topics of potential interest cannot be consid-
ered here due to space consideration. This article discussed
using GANs to approximate a distribution p(x) they have also
been extended to the conditional setting23, 25 where they gen-
erate samples corresponding to some input by drawing sam-
ples from the conditional distribution p(x | y). GANs are
related to moment matching16 and optimal transport.1 A
quirk of GANs that is made especially clear through their
connection to MMD and optimal transport is that they may
be used to train generative models for which pmodel has sup-
port only on a thin manifold and may actually assign zero
likelihood to the training data. GANs struggle to generate
discrete data because the back-propagation algorithm
needs to propagate gradients from the discriminator
through the output of the generator, but this problem is
being gradually resolved.9 Like most generative models,
GANs can be used to fill in gaps in missing data.34 GANs have
proven very effective for learning to classify data using very
few labeled training examples.29 Evaluating the performance
of generative models including GANs is a difficult research
area in its own right.29, 31, 32, 33 GANs can be seen as a way for
machine learning to learn its own cost function, rather than
minimizing a hand-designed cost function. GANs can be
seen as a way of supervising machine learning by asking it to

approximation to their true underlying task. The only real
error is the statistical error (sampling of a finite amount of
training data rather than measuring the true underlying
data-generating distribution) and failure of the learning
algorithm to converge to exactly the optimal parameters.
Many generative modeling strategies would introduce these
sources of error and also further sources of approximation
error, based on Markov chains, optimization of bounds on
the true cost rather than the cost itself, etc.

It is difficult to give much further specific guidance regard-
ing the details of GANs because GANs are such an active
research area and most specific advice quickly becomes out
of date. Figure 6 shows how quickly the capabilities of GANs
have progressed in the years since their introduction.

4. CONVERGENCE OF GANS
The central theoretical results presented in the original GAN
paper13 were that:

1.	 in the space of density functions pmodel and discrimina-
tor functions D, there is only one local Nash equilib-
rium, where pmodel = pdata.

2.	 if it were possible to optimize directly over such den-
sity functions, then the algorithm that consists of opti-
mizing D to convergence in the inner loop, then
making a small gradient step on pmodel in the outer
loop, converges to this Nash equilibrium.

However, the theoretical model of local moves directly in
density function space may not be very relevant to GANs as
they are trained in practice: using local moves in parameter
space of the generator function, among the set of functions
representable by neural networks with a finite number of
parameters, with each parameter represented with a finite
number of bits.

In many different theoretical models, it is interesting to
study whether a Nash equilibrium exists,2 whether any

Figure 6. An illustration of progress in GAN capabilities over the course of approximately three years following the introduction of
GANs. GANs have rapidly become more capable, due to changes in GAN algorithms, improvements to the underlying deep learning
algorithms, and improvements to underlying deep learning software and hardware infrastructure. This rapid progress means that
it is infeasible for any single document to summarize the state-of-the-art GAN capabilities or any specific set of best practices;
both continue to evolve rapidly enough that any comprehensive survey quickly becomes out of date. Figure reproduced with
permission from Brundage et al.5 The individual results are from Refs. Goodfellow,13 Karras et al.,14 Liu and Tuzel,17 and
Radford et al.27 respectively.

2014 2015 2016 2017

research highlights

144 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL. 63 | NO. 11

produce any output that the machine learning algorithm
itself recognizes as acceptable, rather than by asking it to
produce a specific example output. GANs are thus great for
learning in situations where there are many possible correct
answers, such as predicting the many possible futures that
can happen in video generation.19 GANs and GAN-like mod-
els can be used to learn to transform data from one domain
into data from another domain, even without any labeled
pairs of examples from those domains (e.g., Zhu et al.35). For
example, after studying a collection of photos of zebras and
a collection of photos of horses, GANs can turn a photo of a
horse into a photo of a zebra.35 GANs have been used in sci-
ence to simulate experiments that would be costly to run
even in traditional software simulators.7 GANs can be used
to create fake data to train other machine learning models,
either when real data would be hard to acquire30 or when
there would be privacy concerns associated with real data.3
GAN-like models called domain-adversarial networks can be
used for domain adaptation.12 GANs can be used for a variety
of interactive digital media effects where the end goal is to
produce compelling imagery.35 GANs can even be used to
solve variational inference problems used in other
approaches to generative modeling.20 GANs can learn useful
embedding vectors and discover concepts like gender of
human faces without supervision.27

6. CONCLUSION
GANs are a kind of generative model based on game theory.
They have had great practical success in terms of generating
realistic data, especially images. It is currently still difficult
to train them. For GANs to become a more reliable technol-
ogy, it will be necessary to design models, costs, or training
algorithms for which it is possible to find good Nash equilib-
ria consistently and quickly.�

References
	 1.	 Arjovsky, M., Chintala, S., Bottou, L.

Wasserstein gan. arXiv preprint
arXiv:1701.07875 (2017).

	 2.	 Arora, S., Ge, R., Liang, Y., Ma, T.,
Zhang, Y. Generalization and
equilibrium in generative adversarial
nets (gans). arXiv preprint
arXiv:1703.00573 (2017).

	 3.	 Beaulieu-Jones, B.K., Wu, Z.S.,
Williams, C., Greene, C.S. Privacy-
preserving generative deep neural
networks support clinical data
sharing. bioRxiv (2017), 159756.

	 4.	 Bengio, Y., Thibodeau-Laufer, E.,
Alain, G., Yosinski, J. Deep generative
stochastic networks trainable by
backprop. In ICML’2014 (2014).

	 5.	 Brundage, M., Avin, S., Clark, J.,
Toner, H., Eckersley, P., Garfinkel, B.,
Dafoe, A., Scharre, P., Zeitzoff, T., Filar, B.,
Anderson, H., Roff, H., Allen, G.C.,
Steinhardt, J., Flynn, C., hÉigeartaigh,
S.Ó., Beard, S., Belfield, H., Farquhar, S.,
Lyle, C., Crootof, R., Evans, O., Page, M.,
Bryson, J., Yampolskiy, R., Amodei, D.
The Malicious Use of Artificial
Intelligence: Forecasting, Prevention,
and Mitigation. ArXiv e-prints (Feb. 2018).

	 6.	 Danihelka, I., Lakshminarayanan, B.,
Uria, B., Wierstra, D., Dayan, P.
Comparison of maximum likelihood
and GAN-based training of real nvps.
arXiv preprint arXiv:1705.05263
(2017).

	 7.	 de Oliveira, L., Paganini, M., Nachman,
B. Learning particle physics by
example: location-aware generative
adversarial networks for physics
synthesis. Computing and Software for
Big Science 1 1(2017), 4.

	 8.	 Deng, J., Dong, W., Socher, R.,
Li, L.-J., Li, K., Fei-Fei, L. ImageNet: A
Large-Scale Hierarchical Image
Database. In CVPR09 (2009).

	 9.	 Fedus, W., Goodfellow, I.,
Dai, A.M. MaskGAN: Better text
generation via filling in the _____. In
International Conference on Learning
Representations (2018).

	10.	 Fedus, W., Rosca, M.,
Lakshminarayanan, B., Dai, A.M.,
Mohamed, S., Goodfellow, I. Many
paths to equilibrium: GANs do not
need to decrease a divergence at
every step. In International
Conference on Learning
Representations (2018).

	11.	 Frey, B.J. Graphical Models for Machine
Learning and Digital Communication.
MIT Press, Boston, 1998.

	12.	 Ganin, Y., Lempitsky, V. Unsupervised
domain adaptation by
backpropagation. In International
Conference on Machine Learning
(2015), 1180–1189.

	13.	 Goodfellow, I., Pouget-Abadie, J.,
Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.
Generative adversarial nets.

Z. Ghahramani, M. Welling, C. Cortes,
N.D. Lawrence, K.Q. Weinberger, eds.
Advances in Neural Information
Processing Systems 27, Curran
Associates, Inc., Boston, 2014,
2672–2680.

	14.	 Karras, T., Aila, T., Laine, S., Lehtinen, J.
Progressive growing of GANs for
improved quality, stability, and variation.
CoRR, abs/1710.10196 (2017).

	15.	 Kingma, D.P., Welling, M. Auto-
encoding variational bayes. In
Proceedings of the International
Conference on Learning
Representations (ICLR) (2014).

	16.	 Li, Y., Swersky, K., Zemel, R.S. Generative
moment matching networks. CoRR,
abs/1502.02761 (2015).

	17.	 Liu, M.-Y., Tuzel, O. Coupled generative
adversarial networks. D.D. Lee, M.
Sugiyama, U.V. Luxburg, I. Guyon, R.
Garnett, eds. Advances in Neural
Information Processing Systems 29,
Curran Associates, Inc., Boston, 2016,
469–477.

	18.	 Lucic, M., Kurach, K., Michalski, M.,
Gelly, S., Bousquet, O. Are GANs
created equal? a large-scale study.
arXiv preprint arXiv:1711.10337 (2017).

	19.	 Mathieu, M., Couprie, C., LeCun, Y.
Deep multi-scale video prediction
beyond mean square error. arXiv
preprint arXiv:1511.05440 (2015).

	20.	 Mescheder, L., Nowozin, S., Geiger, A.
Adversarial variational bayes: Unifying
variational autoencoders and
generative adversarial networks. arXiv
preprint arXiv:1701.04722 (2017).

	21.	 Mescheder, L., Nowozin, S., Geiger, A.
The numerics of gans. In Advances in
Neural Information Processing
Systems (2017), 1823–1833.

	22.	 Metz, L., Poole, B., Pfau, D.,
Sohl-Dickstein, J. Unrolled generative
adversarial networks. arXiv preprint
arXiv:1611.02163 (2016).

	23.	 Mirza, M., Osindero, S. Conditional
generative adversarial nets. arXiv
preprint arXiv:1411.1784 (2014).

	24.	 Nagarajan, V., Kolter, J.Z. Gradient
descent GAN optimization is locally
stable. I. Guyon, U.V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, R. Garnett, eds.
Advances in Neural Information
Processing Systems 30, Curran
Associates, Inc., Boston, 2017,
5585–5595.

	25.	 Odena, A., Olah, C., Shlens, J.
Conditional image synthesis with
auxiliary classifier gans. arXiv preprint
arXiv:1610.09585 (2016).

	26.	 Oord, A. v. d., Li, Y., Babuschkin, I.,
Simonyan, K., Vinyals, O.,
Kavukcuoglu, K., Driessche, G. v. d.,
Lockhart, E., Cobo, L.C., Stimberg, F.,
et al. Parallel wavenet: Fast
high-fidelity speech synthesis. arXiv
preprint arXiv:1711.10433 (2017).

	27.	 Radford, A., Metz, L., Chintala, S.
Unsupervised representation learning
with deep convolutional generative
adversarial networks. arXiv preprint
arXiv:1511.06434 (2015).

	28.	 Ratliff, L.J., Burden, and S.A., Sastry,
S.S. Characterization and computation
of local nash equilibria in continuous
games. In Communication, Control,
and Computing (Allerton), 2013 51st
Annual Allerton Conference on. IEEE,
(2013), 917–924.

	29.	 Salimans, T., Goodfellow, I.,
Zaremba, W., Cheung, V., Radford, A.,
Chen, X. Improved techniques for
training gans. In Advances in Neural
Information Processing Systems
(2016), 2234–2242.

	30.	 Shrivastava, A., Pfister, T., Tuzel, O.,
Susskind, J., Wang, W., Webb, R.
Learning from simulated and
unsupervised images through
adversarial training.

	31.	 Theis, L., van den Oord, A., Bethge,
M. A note on the evaluation of
generative models. arXiv:1511.01844
(Nov 2015).

	32.	 Unterthiner, T., Nessler, B.,
Klambauer, G., Heusel, M., Ramsauer,
H., Hochreiter, S. Coulomb GANs:
Provably optimal Nash equilibria via
potential fields. arXiv preprint
arXiv:1708.08819 (2017).

	33.	 Wu, Y., Burda, Y., Salakhutdinov, R.,
Grosse, R. On the quantitative analysis
of decoder-based generative models.
arXiv preprint arXiv:1611.04273 (2016).

	34.	 Yeh, R., Chen, C., Lim, T.Y., Hasegawa-
Johnson, M., Do, M.N. Semantic image
inpainting with perceptual and
contextual losses. arXiv preprint
arXiv:1607.07539 (2016).

	35.	 Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.
Unpaired image-to-image translation
using cycle-consistent adversarial
networks. arXiv preprint
arXiv:1703.10593 (2017).

Ian Goodfellow, written while at Google
Brain.

Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and
Yoshua Bengio, Université de Montréal.

Final submitted 5/9/2018.

Copyright held by authors/owners. Publication rights licensed to ACM.

