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Abstract

Why do geometric shapes such as lines, circles, zig-zags
or spirals appear in all human cultures, but are never
produced by other animals? Here, we formalize and test
the hypothesis that all humans possess a compositional
language of thought that can produce line drawings as
recursive combinations of a minimal set of geometric
primitives. We present a programming language, similar
to Logo, that combines discrete numbers and continuous
integration in higher-level structures based on repetition,
concatenation and embedding, and show that the sim-
plest programs in this language generate the fundamen-
tal geometric shapes observed in human cultures. On
the perceptual side, we propose that shape perception in
humans involves searching for the shortest program that
correctly draws the image (program induction). A con-
sequence of this framework is that the mental difficulty
of remembering a shape should depend on its minimum
description length (MDL) in the proposed language. In
two experiments, we show that encoding and process-
ing of geometric shapes is well predicted by MDL. Fur-
thermore, our hypotheses predict additive laws for the
psychological complexity of repeated, concatenated or
embedded shapes, which are experimentally validated.
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Highlights

• Some geometrical shapes are universally attested
in humans, but not other animals

• We formalize the hypothesis of a compositional
language of thought for shapes

• We argue for modeling human shape perception
as program induction

• We provide empirical evidence of our proposal and
outline the space of alternatives

Introduction

We could never know the geometric triangle
through the one we see traced on paper, if
our mind had not had the idea of it else-
where.

René Descartes

The cognitive origins of geometric knowledge remains
heavily debated. While several animal species possess
sophisticated neural circuits for spatial navigation (in-
cluding head direction, place, grid and border cells),
only humans seem capable of conceiving formal, sym-
bolic geometric structures. The formalization of geom-
etry is traditionally dated to Euclid’s Elements, itself
rooted in Egyptian and Babylonian precursors. Yet var-
ious lines of evidence suggest that an intuitive sense of
geometry is much more ancient, and that many, possi-
bly all human cultures share a drive towards creating
geometric designs (Van der Waerden, 2012). Through-
out the world, at geographically distant and presumably
unrelated sites, humans have produced parallel lines, cir-
cles, squares, zig-zags or spirals, in activities as diverse
as drawing, pottery, body paintings, rock art, land art
(e.g., Nazca lines), stone-cutting (e.g., bifaces), or large-
scale constructions (e.g., Stonehenge). Many Neolithic
sites contain square, circular or rectangular buildings
as well as large circles of stones (cromlechs) whose axes
are often systematically oriented relative to geograph-
ical or astronomical landmarks (Pimenta & Tirapicos,
2015). Before the advent of artificial flight, the shape of
these large structures could not be directly apprehended:
from the ground, they would be perceived as a distorted
quadrilateral or ellipse, at best. The fact that squares
and circles appeared at many different scales suggests
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that their human designers possessed an abstract men-
tal concept of geometric shape that guided their archi-
tectural, artistic or practical creations.

Human and animal sensitivity to geometric pat-
terns: a brief review

Evidence for abstract concepts of geometry, including
rectilinearity, parallelism, perpendicularity and sym-
metries, is widespread throughout prehistory. About
70,000 years ago, homo Sapiens at Blombos cave carved
a piece of ocher with three interlocking sets of par-
allel lines forming equilateral triangles, diamonds and
hexagons (Henshilwood et al., 2002). Much earlier, ap-
proximately 540,000 years ago, homo Erectus in Java
carved a zig-zag pattern on a shell (Joordens et al.,
2015). Such a zig-zag may look simple, but it approxi-
mately respects geometric constraints of equal lengths,
equal angles and parallelism, and is undoubtedly at-
tributed to the homo genus. Even earlier, since ~1.8 mil-
lion years, ancient humans have been carving spheroids
(sphere-like stones) and bifaces — stones possessing
two orthogonal planes of symmetry (Le Tensorer, 2006).
The vast number of bifaces, their near-perfect symmetry
(which is not required for them to operate as efficient
tools), and the archeological evidence that many were
never used as tools, suggest that an aesthetic drive for
symmetry was already present in ancient humans.

Contemporary cognitive anthropology corroborates
those findings. Cognitive tests performed in relatively
isolated human groups such as the Mundurucu from the
Amazon, the Himba from Namibia, or aborigine groups
from Northern Australia, show that in the absence of
formal education in mathematics, adults and even chil-
dren already possess strong intuitions of numerical and
geometric concepts (Amalric et al., 2017; Butterworth
et al., 2008; Dehaene et al., 2006; Izard et al., 2011b;
Pica et al., 2004; Sablé-Meyer et al., 2021).(Amalric et
al., 2017; Butterworth et al., 2008; Dehaene et al., 2006;
Izard et al., 2011b; Pica et al., 2004; Sablé-Meyer et
al., 2021) Indeed, those uneducated adults and children
share a large repertoire of abstract geometric concepts
(Dehaene et al., 2006) and use them to capture the reg-
ularities in spatial sequences (Amalric et al., 2017) and
quadrilateral shapes such as squares or parallelograms
(Sablé-Meyer et al., 2021). They even possess sophisti-
cated intuitions of how parallel lines behave under pla-
nar and spherical geometry, such as the unicity of a
parallel line passing through a given point on the plane
(Izard et al., 2011a).

Another piece of evidence arises from developmental
data. Preschoolers and even infants have been shown
to possess sophisticated intuitions of space (Hermer &

Spelke, 1994; Landau et al., 1981; Newcombe et al.,
2005), spatial sequences (Amalric et al., 2017), and mir-
ror symmetry (Bornstein et al., 1978). Indeed, even
preschoolers’ drawings already show a tendency to rep-
resent abstract properties of objects rather than the ob-
ject itself. Although they look primitive, drawings of a
house as a triangle on top of a square, or a person as
a stick figure with a round head, suggest a remarkable
capacity for abstracting away from the actual shape and
attending to its principal axes, at the expense of realism.
Numerous tests leverage this geometric competence to
measure a kid’s development by counting the number
of correct or incorrect abstract properties, for instance
when asked to draw a person (Goodenough, 1926; Harris,
1963; Long et al., 2019; Prewett et al., 1988; Reynolds &
Hickman, 2004). There is some evidence, however lim-
ited, that this ability may be specifically human: when
given pencils or a tablet computer, other non-human pri-
mates do not draw any abstract shapes or recognizable
figures, but mostly generate shapeless scribbles (Saito
et al., 2014; Tanaka et al., 2003).

We recently compared the perception of quadrilateral
geometric shapes in humans and in baboons, using the
very same task (Sablé-Meyer et al., 2021). We used
the intruder test (Dehaene et al., 2006), which involves
viewing an array of pictures and clicking on the one
that looks distinctly different from the others, and is
well within the grasp of human adults, children and ba-
boons. All humans, regardless of age, culture and ed-
ucation, exhibited a striking effect of shape regularity:
squares and rectangles were processed better than other,
more irregular quadrilaterals, and there was a continu-
ous ordering of complexity, from squares and rectangles
to parallelograms, trapezoids, and fully irregular shapes.
Strikingly, this geometric regularity effect was absent in
baboons. Baboon behavior was quite consistent across
individuals and could be captured by neural network
models of the ventral visual pathway for object recogni-
tion. Modeling the human perception of quadrilaterals,
however, required an additional assumption, namely the
existence of discrete symbolic concepts of parallelism,
right angle, equal length, or equal angle. We therefore
argued that two strategies can be used to perform the
outlier task: a visual one, available to all primates, and
an abstract, symbolic one that may be unique to humans
(Sablé-Meyer et al., 2021).

Summary of our approach and hypotheses

In the present paper, we formalize and put to an em-
pirical test the hypothesis that geometry is one of the
manifestations of the specifically human ability to rep-
resent and manipulate recursively embedded languages
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Figure 1

Geometric shapes in human cultural history. A,
examples of small- and large-scale geometric drawings
and constructions (From left to right and top to bottom:
an engraved slab from Blombos caves dating about
70.000 years ago (Henshilwood et al., 2002); zigzag
pattern engraved on a shell in Java approximately
540.000 years ago (Joordens et al., 2015); Boscawen-
Ûn’s Bronze Age elliptical cromlech in Cornwall; spiral
stone engraving on Signal Hill in Saguaro National
Park, Arizona, dated 550 to 1550 years ago; geometrical
shapes below the painting of a Megaloceros in Lascaux,
France, typically dated to be 17,000 years old). B,
basic shapes found in many human cultures and which
exemplify the main components of the proposed language
for geometric shapes: line (continuous integration),
circle and spiral (integration with continuous variation
in parameters such as direction or speed), zigzag
(concatenation), square (discrete repetition), and square
of circles (embedding of a subprogram).

(Dehaene et al., 2015; Fitch, 2014; Fodor, 1975; Fran-
kland & Greene, 2020; Hauser et al., 2002; Piantadosi,
2011).

Fodor (1975) famously introduced the language of
thought hypothesis, according to which an inner com-
binatorial language underlies high-level cognition in hu-
mans and allows the creation of a vast space of mental
representations by recursive recombination of preexist-
ing ones. Hauser, Chomsky and Fitch (Hauser et al.,
2002) hypothesized that recursion might be the single
uniquely human ingredient that explains the emergence

of the human language faculty. Fitch (2014) and De-
haene et al. (2015) later argued that recursion is not
limited to linguistic communication, and that various
“languages of thought”, all based on a basic capacity
for recursive syntax and compositional semantics, could
underlie many other uniquely human abilities such as
music, mathematics or theory of mind. Here, we apply
this idea to the domain of geometric shape perception.

Our proposal builds upon the seminal work of Leeuwen-
berg and colleagues (Boselie & Leeuwenberg, 1986;
Leeuwenberg, 1971), who proposed a formal coding lan-
guage for 2- and 3-dimensional shapes, and showed
that it could account for data on human shape percep-
tion. Furthermore, Leeuwenberg’s formal code output
sequences of numbers which, when interpreted as pat-
terns, could also predict auditory pattern perception in
humans. Later, Leyton (1984, 2003) argued that the
shapes that humans generate arise from a set of primi-
tives (points, lines, planes) together with the repeated
mental application of a series of group transformations
that duplicate, stretch, rotate, or skew them. While
these elegant proposals have had a considerable influ-
ence in the design of graphics software, it is fair to say
that they remained partially disconnected from the ex-
perimental psychophysical or neurophysiological litera-
ture on shape perception (for exceptions, see Brincat &
Connor, 2004, 2006; Hung et al., 2012).

In our previous work, we introduced a much more re-
stricted, yet more precise, language of thought for geo-
metric sequences. Our work focused on capturing the
psychological complexity of all the sequences of 8 loca-
tions that can be generated by drawing without repe-
tition from the vertices of an octagon (Amalric et al.,
2017). The basic building blocks of our proposed lan-
guage were the arithmetic primitive of discrete number,
the geometric primitives of symmetry and rotation, and
a single recursive operation of repetition (possibly with
variations). These operations could be embedded, thus
allowing for repetitions of repetitions in a nested manner.
For instance, the repeated application of a symmetry
operation, each time with an increment in the starting
point, could generate a zig-zag pattern. A square could
be generated by a 4-fold repetition of moving by 2 ver-
tices around the octagon. As a more complex example,
a sequence of two squares could be generated by two
nested “for loops”, i.e. a 2-fold repetition (while chang-
ing the starting point) of the 4-fold repetition that draws
a square. These examples illustrate the generative power
of the concept of repetition with variation, which is
indeed formally indistinguishable from symmetry, a key
concept on which mathematics is founded.

Amalric et al. (2017) measured empirically the difficulty
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that preschoolers and adults (including Mundurucu
adults) had in predicting or memorizing spatial se-
quences of locations on an octagon. Across 11 geometric
sequences, psychological complexity was determined by
the complexity of their internal representation in the
proposed language. Working memory was not deter-
mined by sequence length (which, indeed, was fixed at
8 items), but by the capacity to compress the sequence
into a compact internal representation using the pro-
posed language. The central concept here, as already
proposed by many others (Chater & Vitányi, 2003; Feld-
man, 2000, 2003; Li & Vitányi, 1997; Mathy & Feldman,
2012; Romano et al., 2013), is that psychological com-
plexity in humans depends on minimum description
length (MDL), i.e. the length of the shortest mental
representation which can encode the sequence, rather
the literal length of the sequence. In the case of our
language for geometric sequences, MDL was also shown
to tightly predict brain activity in both functional mag-
netic resonance imaging (fMRI; Wang et al., 2019) and
magneto-encephalography (Al Roumi et al., 2021). The
very same language was also successfully extended to
account for the perception of simple auditory sequences
made of two discrete sounds (Planton et al., 2021).

In the present work, we move beyond discrete sequences
made of points and straight lines, and tackle the men-
tal representation of static geometric shapes such as a
square, a circle or a spiral. As noted above, the square is
easily captured by a language with discrete integers and
repetition (“for loops”). However, continuously varying
shapes such as circles and spirals raise interesting issues
that arguably require more than integers. In computer
languages such as Logo, such drawings are implemented
using a discrete repetition instruction with a very small
increment, thus drawing a quasi-continuous curve which
is in fact made of straight lines. However, we find im-
plausible the idea that humans intuitively think of such
an infinitesimal and inherently discrete representation
when thinking of a circle. Furthermore, computation-
ally, the unbounded nature of such infinitesimal loops
would allow short programs to generate visually complex
shapes. Instead, we argue that the crucial notion of “rep-
etition with variation” introduced in our previous work
can be helpful again, but now in a continuous version.
We propose that, whenever a mental primitive is avail-
able, for instance for drawing a straight line, mental con-
trol structures in humans are available to either keep its
parameters constant, or to continuously vary them over
time. Thus, the new version of our proposed languages
includes, not only discrete repetition (“for loops”), but
also continuous repetition (i.e. integration). As a re-
sult, the language can conceive of a curve with a fixed
amount of turning at any moment – a circle –, or a curve

where the amount of turning increases continuously – a
spiral –, etc. Our proposal implies that both discrete
repetition and continuous path integration are primitive
concepts in the human language of geometry. Indeed, a
key hypothesis of the present work is that the human
mind can encode discrete as well as continuous changes
and integrate them within a single language of thought.
This part of our proposal is deeply related to the near-
universal existence of a system of aspect in human lan-
guages, thus betraying the existence of continuous and
discrete concepts of time and repetition (compare for in-
stance the imperfect, e.g. “the curve was turning”, with
the perfect, e.g. “the curve turned”) (Comrie, 1976).

In summary, we propose that the human mental rep-
resentation of geometric shape involves a language of
thought that can produce virtually all the geometric line
drawings observed in human cultures as combinations of
a minimal set of geometric primitives. Our core hypoth-
esis is that perceiving a shape, in humans, consists in
finding the shortest program that suffices to reproduce
it. Our proposal thus connects shape perception to the
problem of program induction, i.e. the identification of
a program that produces a certain output. In line with
much previous work (e.g. Chater & Vitányi, 2003; Feld-
man, 2000, 2003; Li & Vitányi, 1997; Mathy & Feld-
man, 2012; Romano et al., 2013), we hypothesize that
the perceived complexity of a shape is determined by
its minimum description length (MDL) in the proposed
language.

Below, we describe the proposed language in detail, list
its predictions, and test them in two experiments. First,
we show that our language predicts which shapes are
judged simple. Second, we show that any such language
has to satisfy a set of additive relationships for repeated,
concatenated or embedded shapes, and that those uni-
versal laws can be experimentally validated.

A generative language for geometric shapes

Here, we make our proposal concrete by introducing a
specific language, somewhat similar to Logo’s turtle lan-
guage, for generating a variety of geometric line draw-
ings. The language we propose is based on two pos-
tulates. First, we assume that all humans possess a
set of primitive operators or “mental routines” (Ullman,
1984) that serve as building blocks for more complex
programs. We included elementary primitives that have
been proven to be present in human children or adults
in the absence of formal education; several of them are
likely to be inherited from primate evolution. Our prim-
itives comprise the concepts of

• Small exact integers (Feigenson et al., 2004) which
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can be minimally generated by the successor func-
tion (Izard et al., 2008),

• Fractions, i.e. ratios of those integers (Jacob &
Nieder, 2009; Siegler et al., 2011)

• Straight line (see e.g. Izard et al., 2011b),

• Heading direction (Muller et al., 1996) and how it
changes when we turn,

• Path integration (Dehaene et al., 2006; Gallis-
tel, 1990; Leeuwenberg, 1971; McNaughton et al.,
2006; O’Keefe & Nadel, 1978),

• Right angle turn (Dehaene et al., 2006; Dillon et
al., 2019; Izard et al., 2011b)

Extensions of this list, for instance to large approximate
numbers, would be straightforward and are considered
in the discussion, but as we shall see, those primitives
appear to suffice to account for a broad variety of geo-
metric shapes that humans universally consider simple.

Our second postulate is that, in humans only, a compo-
sitional language of thought allows these primitive oper-
ators to be combined into larger programs. We suppose
that three composition instructions are available: con-
catenation; repetition; and call to a subprogram.

Program instructions

The full language, described in Figure 2, contains the
following instructions. First, as in the “logo” language
(Abelson et al., 1974), drawing instructions dictate the
movements of a pen that can move and trace curves on
a plane. Those instructions are Turn, which changes
the current heading of the pen; Move, which changes
the position of the pen by a certain amount in the cur-
rent direction without tracing; and Trace, which traces a
curve by integrating over a set of parameters (duration,
speed, acceleration, and turning speed).

Second, the three control structures are Concatenate
(also denoted by “;”) which executes one program and
then another; Repeat, which repeats a program a certain
number of times (twice by default); and Subprogram
which saves the current state, executes a given program,
and resumes the previous state for the rest of the execu-
tion.

Third, since these instructions require either discrete or
continuous arguments, the language contains a number
system, with integers (Int) and numerical (Num) types.
For computational simplicity, in order to avoid a huge
combinatorial explosion that would prevent the enumer-
ation of all minimal programs, we did not include a full
algebra, in spite of recent evidence that humans may

possess one (Grace et al., 2020). Instead, the Int’s are
built using Peano arithmetic starting from 1 (the lan-
guage has a one primitive and a successor primitive,
and the Num are either signed integers (positive or nega-
tive), or signed fractions of two integers. This is enough
to generate rational numbers, but prevents nesting of
fractions.

While the numbers generated by our language are unit-
less, they are interpreted differently depending on the
functions in which they are evaluated. For the Turn
function, an argument of 1 is interpreted as “one right
angle” (i.e. the unit for angle is “right angle”). Similarly,
Move and Trace instructions use implicit units of length
and speed, such that the default values (1) on duration
and turning speed imply turning by a full circle. These
hypotheses, while plausible, are not crucial, since chang-
ing them would only minimally change the predicted
shape complexities (e.g. if the default turn was by 180°,
a right-angle turn would still be available at a minimal
cost, as half of it).

Calculation of minimum description length

Our language does not guarantee that each shape can
be generated by a single program. Quite the opposite:
whenever a shape can be generated at all, an infinity
of programs are available to generate it. Our third key
postulate is therefore that humans search for the short-
est program that draws a given shape. We refer to the
complexity of the shortest program for a given shape as
its Minimum Description Length (MDL), and the corre-
sponding program(s) as the Minimal Program(s). No-
tice that this is compatible with a Bayesian framework,
or probabilistic program induction (Lake et al., 2015):
since the number of programs of MDL 𝑛 increases expo-
nentially with 𝑛, the log likelihood of a given program
will be proportional to its MDL.

The complexity of a program is defined as the number
of nodes in its syntax tree, or equivalently the number
of primitives in the program, with two exceptions. First,
whenever a signed number is required, for instance when
turning by a certain angle, an additional node is needed
(indicating + or -). This node was not counted, thus
preventing the cost of signed values from being system-
atically higher than that of unsigned values (e.g. one,
vs. +one) Second, concatenations did not increase MDL.
This feature arose as a by-product of our implementa-
tion, which used continuations (any program can take a
program as an argument, and if it does then it executes
it once it is done, which is equivalent to concatenation).
We checked that the results did not change dramatically
when adding a cost for concatenations, as the results
should not hinge on this implementation detail.
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Figure 2

Proposed language of thought for the mental representation of geometric shapes. The figure
lists all primitive operators and their parameters. As indicated in the right column, **control** primitives act on
programs, drawing primitives move the pen on the plane in various ways, and arithmetic instructions generate
integers and fractions that are passed as parameters. Green, instructions; pink, types; blue, named parameters;
gray, default values for optional arguments (denoted by brackets).

Examples

The minimal program to draw a square is Repeat { Re-
peat { Trace ; Turn(angle=+one) } } (where the in-
fix operator “;” denotes concatenation). This program
works because, in the absence of any argument, Repeat
defaults to 2 repetitions. Since a turn of one means
a right-angle turn, this program concatenates four seg-
ments, each ending with a right-angle turn. The cost
of this program is 5 (repeat + repeat + trace + turn +
one).

As a slightly more complex example, the following pro-
gram draws a triskelion ( ), a classic Celtic figure:

Repeat(next(next(one))) {

Subprogram { Trace(acceleration=-
one/next(next(one)),

turningSpeed=one)
} ;

Turn(angle=next(next(next(one)))/next(next(one)))

}

This program draws three identical inward spirals using
the Trace instruction. Note that the number 3 is coded
as next(next(one)) (again, this assumption is adopted
for simplicity; adding primitives for numbers 2 and 3

would only minimally change the predicted cost). The
Subprogram instruction ensures that, after drawing a sin-
gle spiral, the position is reset to the origin. The Turn
instruction, which takes 4/3 as its argument, ensures
that the three spirals are oriented at 120 degrees from
each other.

Simulation results

We first examined the shortest programs in the proposed
language, and whether they always generate shapes
that are simple and frequently attested in human cul-
tural history. To this end, we wrote a program that
systematically enumerates all possible programs in or-
der of increasing MDL, and draws the corresponding
shapes (we eliminated, automatically as well as manu-
ally, the shapes that could be generated by a simpler
program). Figure 3 shows a subsample of the resulting
shapes, sorted by MDL. The simplest, lowest complex-
ity shapes are extremely simple: they consist of a line
segment (MDL=1), then a circle (MDL=2) and a spiral
(MDL=3). The low-complexity shapes with MDL = 4
or 5 are also excellent candidates for cultural univer-
sals: repeating circles, dashed lines, spirals with various
numbers of loops, and other simple mathematical shapes
such as the square, the half-circle, or two tangent circles.
At this stage, the concatenation instruction also gener-
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ates less intuitive, but still culturally attested shapes
such as a “sigma” (segment + circle) or a “crosier” (seg-
ment + spiral). As MDL increases, the huge combi-
natorial explosion of programs results in an enormous
variety of shapes, only some of which are culturally ob-
served. Nevertheless, the shapes with low MDL remain
introspectively simple (this intuition is tested formally
in experiment 1 further below). This observation is in
stark contrast with most other such languages where
the combinatorial explosion creates short programs with
complex, unintuitive graphic outputs (e.g. logo).

Program induction using DreamCoder

A crucial aspect of our proposal is that humans encode a
shape mentally by inferring a simple program that could
generate it. Thus, the perception of a simple shape is
an act of “program induction”. Yet it is implausible
that humans scan through thousands of programs be-
fore recognizing a square. Otherwise, the time required
to recognize a shape would grow exponentially with the
length of its shortest program. Thus, it is important to
show that such an inference is, at least approximately,
computationally feasible in our specific case. While pro-
gram induction remains a difficult challenge for com-
puter science, we leveraged a state-of-the-art program
induction technique, the DreamCoder algorithm (Ellis
et al., 2021). This algorithm is given programming prob-
lems via examples of the desired behavior, and searches
for the simplest program that performs the task. Here, a
task reduces to a shape, and DreamCoder has to find the
shortest program that generates it. DreamCoder inter-
nally represents the language as a probabilistic grammar
and enumerates programs according to their likelihood
using the probabilistic weights of the grammar.

Two features of DreamCoder speed up the search. First,
the weights are task-dependent and are suggested by a
neural network for a given task. For instance, Dream-
Coder may learn that shapes with straight lines call the
Trace instruction without any TurningSpeed argument.
The neural network can be trained without any envi-
ronmental input or supervision, simply by sampling a
random program, generating the corresponding shape
(called “dreaming”) in a top-down manner, then using
this internally generated shape-program data pair in
supervised learning in order to adjust the bottom-up
weights from the shape to its program representation
(see also Lake et al., 2017). Second, DreamCoder builds
new abstractions for pieces of programs that are often
used for a given set of tasks: for example, if the shapes
contain many right angles, it may create a new abstrac-
tion Turn(angle=1), thereby increasing the likelihood
of programs that use it. In a Bayesian sense, this cor-
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Figure 3

Sample shapes generated by the enumeration of
all programs in the proposed language. Programs
were listed by increasing MDL. Identical or perceptually
indistinguishable shapes that could be generated by a
simpler program were eliminated. Starting at MDL=4,
only a limited sample of 7 shapes is shown, as the
number of shapes increases exponentially with MDL.

responds to updating the priors over the space of pro-
grams. This abstraction mechanism is useful to capture
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Figure 4

Testing the DreamCoder algorithm for program
induction. A, shapes used in a training phase. We
verified that, in response to all 32 shapes shown, the
algorithm was able to identify a short, presumably
minimal program that could generate it. The algorithm
was trained either with the square shapes at left (”Greek”
style) or with the circular shapes at right (”Celtic”
style). B, examples of additional shapes spontaneously
generated by sampling from the grammar learned during
the training set, and therefore biased towards a certain
geometric style.

regularities in a corpus of shapes: subprograms used to
draw the simplest ones can be reused to draw more com-
plex ones. Interestingly, these two mechanisms interact.
As the grammar becomes biased towards using certain
program schemas, the neural network also becomes bi-
ased towards recognizing them; for example, the neu-
ral network might increase the probability of the “turn”
primitive when it sees angles, or that of “repeat” when
it notices repeating patterns.

We found that, together, those two mechanisms made
program induction feasible for our language, at least for
relatively simple shapes. In Figure 4, we present two
separate corpora, one with mostly rectilinear shapes (re-
ferred to as “Greek”), and one with mostly curvilinear

shapes (referred to as “Celtic”). After learning, Dream-
Coder could solve all of these tasks. Interestingly, the
abstractions it created were different. This could be vi-
sualized by sampling “dreams” from the resulting gram-
mars. All simple shapes (circles, lines, squares) appear
in both cases, but the grammars exhibit a bias towards
shapes that resemble the training set (bottom row in
figure 4).

The DreamCoder approach opens up a number of per-
spectives on how human cognition could efficiently ad-
dress the problem of program induction. First, it natu-
rally accounts for cultural drifts: while shapes such as
circles and squares are universally shared, cultures are
also characterized by the frequent use of specific pat-
terns (e.g. linear Greek friezes versus curvilinear Celtic
spirals). This arises even though the geometric primi-
tives are universal, because each culture adopts, initially
by chance, some preferred combination of primitives,
which are then internalized as frequent subprograms or
program fragments and progressively cement a specific
style of geometric patterns. Second, DreamCoder may
explain how simple geometric shapes may be efficiently
recognized and used by young children in the absence of
much or any training (poverty of the stimulus argument).
This is because the top-down system (from programs to
shapes) can be used to train the bottom-up system (from
shapes to programs) via the use of “dreams”, i.e. inter-
nally generated training data. In an improved version of
DreamCoder, the bottom-up neural network could be re-
purposed to directly retrieve the most plausible program
for a given shape, thus providing a possible mechanism
by which humans can quickly identify simple shapes. Fi-
nally, another promising aspect of this proposal, which
remains to be fully explored, is the possibility of creating
reusable abstractions or program templates. While the
square, for instance, is not a primitive of the original lan-
guage, a square-drawing program schema may become
abstracted over time, thus allowing the participant to
easily understand concepts such as “a square of circles”
or “a square twice larger than the previous one”, etc.
At present, however, for simplicity, such named subpro-
grams are not part of the current language, but solely
of the DreamCoder program-induction software.

Experiment 1: predicting geometric complexity

Does the proposed language have any psychological real-
ity? In experiment 1, we tested the simplest prediction
of our proposal: the perceived complexity of a shape
should be determined by its minimal program length. If
humans represent shapes as mental programs, then for
tasks involving shape perception and manipulation, the
MDL of the shape should predict the difficulty of the
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Figure 5

Procedure and results for experiment 1. A,
task structure. On each trial, participants pressed
a key for as long as they needed to memorize a shape
(encoding phase), then, after a 2-second delay, had to
select the corresponding shape among a 2x3 grid (choice
phase). Note that there was a size change between phase
1 and phase 2. B, correlation between MDL and
behavior. Average encoding time (purple) and choice
time (orange) are plotted as a function of MDL. Error
bars represent one standard error across participants.
C same

task. For example, as MDL increases, it should take
longer to encode the shape in working memory, and to
compare it with other shapes.

This prediction should hold only provided that other
simple perceptual strategies do not suffice to perform
those tasks. In previous work, we found that the per-
ception of quadrilaterals could be based on two systems:
a list of symbolic rules akin to those arising from the
current language (e.g. right angle, equal sides), and only
available to humans; and a classical invariant shape
recognition system, well captured by a convolutional
neural network model of the ventral visual pathway,
and available to both human and non-human primates
(Sablé-Meyer et al., 2021). Thus, to properly test the
existence of the first system, it is important to cancel
out the potential contributions of the second.

Here, we asked participants to memorize a sample ge-
ometric shape and perform a delayed match-to-sample

task where, after a 2-second delay, that shape had to
be selected from an array of 6 possible choices, some of
which were perceptually quite similar (Figure 5A). We
measured the choice time, but also the encoding time by
letting participants view the sample shape for as long as
they wished, holding down the space bar until they were
ready to decide; as soon as they released the space bar,
the sample shape disappeared, then after a fixed delay,
the choices appeared. We hypothesized that both encod-
ing time and choice time would be predicted by MDL.

Methods

Participants. Participants were 125 adults tested on-
line (53 females, 69 males, 3 preferred not to answer; age
range 20 to 78, mean and median 44 years old), recruited
and tested online via messages on social media. The task
was approved by our university’ committee for ethical
research (CER-Paris-Saclay-2019-063) and participants
gave informed consent.

Procedure and Stimuli. On each trial, we showed
participants a sample shape for a variable duration, then
an empty screen for 2 seconds, and finally a 2x3 choice
screen with 6 shapes. Participants were asked to click
on the shape that was shown originally. Participants
controlled how long they looked at the reference shape:
when they were ready to start a trial, they clicked at
the center of the screen (thus centering their mouse),
then pressed the space bar on their keyboard. The sam-
ple shape was shown for as long as the space bar was
depressed. Upon releasing the space bar, the shape dis-
appeared and they were left with a blank screen. In-
structions insisted on the self-paced nature of the task:
“Keep the spacebar depressed for as long as you deem
necessary to remember the shape well”. We call the du-
ration of the press the encoding time, as it is an indirect
measure of the time that participants needed to encode
the target shape.

The choice screen comprised six different shapes that
were displayed on an isoluminant blue/yellow checker-
board (Figure 5A). At that point, participants could
click on a shape, which ended the trial. We measured
both accuracy and response time, which we refer to as
choice time.

The experiment comprised 6 initial training trials, then
68 trials with 68 unique testing shapes, each appear-
ing only once as a sample. The 68 testing shapes are
shown in figure 3, while the training shapes were 6 ad-
ditional shapes with MDL = 5 in our language. Dur-
ing training, the distractors were always the same six
shapes and participants had each of them as a target
once. Piloting indicated that the choice of distractors
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was crucial for the performance to vary from one shape
to the other: if the distractors were too dissimilar from
the sample shape, participants learned to press and re-
lease the spacebar as fast as they could, knowing that a
purely perceptual strategy sufficed for virtually perfect
accuracy. To mitigate this strategy, we selected distrac-
tors closely matched to each shape. We computed, for
each shape, the four closest ones in figure 3 as defined
by two metrics: (i) the average gray level (average pixel
value of an image), and (ii) the difference in the vector
codes of the shapes within the last layer of a convo-
lutional neural network of object recognition, CORnet
(Kubilius et al., 2019). CORnet is a convolutional neural
network that figures amongst the top-scoring models of
the ventral stream according to BrainScore (Schrimpf et
al., 2018, 2020). Then, on each trial, we presented on
the choice screen, at random locations: (1) the correct
target shape; (2) two of the four closest shapes according
to CORnet; (3) two of the four closest shapes according
to average gray level; (4) a last shape uniformly sam-
pled among the remaining test shapes. The selection
algorithm ensured that all 6 choice shapes differed. The
choice of shapes and their placement were fully random-
ized for each participant, independently within training
and within testing.

Results

Overall error rate was very low (1.82%), so we concen-
trated our analysis on response times. We removed all
participants who failed on 5 or more trials, as well as par-
ticipants whose overall average encoding time or choice
time was higher than the group mean plus three stan-
dard deviations (9 participants removed in total; 116 re-
maining). We also removed, for each shape, trials where
the encoding time exceeded the average encoding time of
that shape plus three standard deviations (and similarly
for choice time). This procedure removed 3.8% of the
total number of trials.

To test for the predicted effect of MDL on behavior,
we performed simple linear regressions on the encod-
ing times and choice times as a function of the MDL.
Both measures were significantly correlated with the
MDL of the target shape (Figure 5B; encoding time:
R²=.68, p<.001; choice time: R²=.73, p<.001). We
also performed between-subjects ANOVAs on the lin-
ear effect of MDL (numerical factor) across participants.
The main effect of MDL was again highly significant
(encoding time: F(1,115)=148.5, p<.001; choice time:
F(1,115)=480.7, p<.001).

Since MDL showed a small but significant partial cor-
relation with gray level (R²=.07, p=.027), we repli-
cated this analysis by first removing the main effect of

gray level on response times, then performing a sim-
ple linear regression on the residuals. The effect of
MDL was again significant (Figure 5.C; encoding time:
R²=.46, p=.016; choice time: R²=.54, p=.006; between-
subjects ANOVAs, encoding time: F(1,115)=118.2,
p<.001; choice time: F(1,115)=248.1, p<.001).

To compare the effects of MDL and gray level, we
also performed a multiple-regression analysis with both
variables (normalized) as predictors, across the 68 test
shapes. For encoding time, both predictors were signif-
icant (both p<.0001; R²=.59; betas = 157.7 (Standard
Error [SE]=37.4) for MDL and 272.0 (SE=37.4) for gray
level). For choice times, both predictors were also sig-
nificant (MDL: p=.0003; gray p<.0001; R²=.53; betas
= 108.7 (SE=28.8) for MDL and 182.75 (SE=28.8) for
gray level).

We also controlled for additional visual features (see Fig-
ure S1). For each shape, we manually counted the num-
ber of extremities (variable Nex), intersections where
two lines meet (singularities, variable Ni2), intersections
where three lines meet (Ni3), intersections where four
or more lines meet (Ni4+), disconnected parts (Ndis),
and finally the presence of a closed shape or not (clo-
sure). To confirm that the effect of MDL did not result
from a spurious correlation with these features, we first
ran a model comparison between a mixed-effect model
with all features, the gray level, and the average spa-
tial frequency, with participants as random intercepts,
and the same model plus the MDL. The second model
was significantly better than the first one for both de-
pendent measures (Likelihood Ratio Test, encoding time
𝜒2 = 106.4, 𝑝 < .001; choice time 𝜒2 = 169.8, 𝑝 < .001).
Figure S1 shows the breakdown of each shape’s property,
as well as a comparison of the predictors associated to
each normalized term in the full model. As a final con-
trol, we computed the residuals from the first model
for each participant, then averaged those residuals over
participants and MDL levels, and examined the correla-
tion of those residuals with MDL. This linear model was
not significant for the encoding time (r²=.04, p=.51),
but it was for choice time (r²=.58, p=.003). Inspection
of the residuals show that the “segment” shape, which
is the only shape with MDL=1, had a very high resid-
ual for the encoding time. After removing this outlier
item, both encoding time and choice time residuals were
now significantly predicted by (encoding time: r²=.5,
p=.015; choice time: r²=.63, p=.003).

Discussion of experiment 1

As predicted, in a delayed match-to-sample task with
geometric shapes, participants were influenced by the
shape’s Minimum Description Length (MDL) in our pro-
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Figure S1

Detailed analysis of Exp. 1 A, breakdown of the properties. For each shape, describes the manually
annotated or computed visual features. B, Predictive power of the visual features.** We ran a mixed-effect GLM
with all the features, normalized for comparison, as well as the cost, and display the fitted coefficient and its
significance, for both choice time and response time. Greyed out predictors were not significant in the regression,
and bright orange indicates our regressor of interest, the MDL. C. The simple linear model MDL and either choice
or response time, on the residuals of a mixed-effect model with all visual features, after averaging per MDL value.
On the right, we display the same regression after removing the condition MDL=1.

posed language. This result held at individual levels,
and applied to both encoding time and choice time, with
similar effect sizes. As shown in figure 3 and in the re-
sults, the effect of MDL was not trivially correlated with
other image properties such as number of parts, intersec-

tions, closure, etc. While behavior was also influenced
by the perceptual property of average gray level, the
effect of MDL remained even when controlling for this
low-level effect and all other variables. This result sup-
ports the prior suggestion that there are two strategies
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available to perform the task (Sablé-Meyer et al., 2021):
one that encodes shapes at a visual level, based on per-
ceptual properties such as gray level, intersections, etc;
and one that represents them at an abstract, symbolic
level, which is well captured by our proposed language.

While this result is promising, there are many reasons
to believe that our proposal is not complete, and that it
would be possible to find shapes for which the fit would
be poor. As we further examine in the general discus-
sion, there are shapes that the language cannot easily
describe (e.g. ovals), or properties it cannot easily en-
code (e.g. while an equilateral triangle has a low MDL,
there is no way to describe “any triangle”). Thus, while
experiment 1 tested the specifics of our language, exper-
iment 2 was designed to test regularities that any such
reasonable language should verify.

Experiment 2: Fundamental laws of repetition,
concatenation and embedding

To sidestep the constraints that come with choosing a
specific language, we designed an experiment that tests,
independently, the three most fundamental aspects of
our proposition, namely the existence of operations of
repetition, concatenation and (nested) embedding (that
is, recursive call to a subprogram). Those operations,
available in any modern programming language, have
the highest impact on the compressibility of shapes and
help decorrelate the length of a program and the amount
of “ink” of a shape. They allow a program to be ex-
tremely short and yet the shape to be complex, as long
as it is highly regular. For instance, from the programs
for squares and circles, a single additional instruction
suffices to generate a circle of squares, or a square of
circles – and thus, this addition should just have an
additive effect on MDL.

These observations lead to the following quantitative
prediction: in any language for geometric shapes which
includes primitives of repetition, concatenation and em-
bedding, the cost of complex shapes should be the sum
of the lengths of (1) the program(s) that are being re-
peated, concatenated or embedded, plus (2) a fixed cost
for the instruction itself and, if necessary, its operands.
Consider for instance a figure formed by two shapes
placed side by side: we predict its complexity to be the
sum of the complexity of each shape plus some constant
for the concatenation instruction. Likewise, the cost for
a repetition of a shape should only depend on the cost
of that shape, plus a constant to express the repetition,
and a cost for the parameter ”number of repetitions”. Fi-
nally, the complexity of a figure consisting of one shape
embedded in another (e.g. a square of circles) should be
the cost of each shape plus a constant for the “embed”

instruction.

In summary, the following relations should hold (at least
for 𝑥 ≠ 𝑦, see below):

[1] 𝐶𝑝𝑙𝑥 (repeat(𝑥, 𝑛)) = 𝛽0+𝛽1∗Cplx(𝑥)+𝛽2∗Cplx(𝑛)

[2] 𝐶𝑝𝑙𝑥 (concat(𝑥, 𝑦)) = 𝛽0 +𝛽1 ∗Cplx(𝑥)+𝛽2 ∗Cplx(𝑦)
[3] 𝐶𝑝𝑙𝑥 (embed(𝑥, 𝑦)) = 𝛽0 +𝛽1 ∗Cplx(𝑥)+𝛽2 ∗Cplx(𝑦)

Note that the multipliers 𝛽1 and 𝛽2 should be close to
1 if the length of the program is the only factor that
comes into play, but might exceed 1 if additional fac-
tors intervene (e.g. interference between the two shapes
in working memory).

In experiment 2, we therefore replicated the delayed
match-to-sample with new stimuli. We selected five base
shapes spanning a broad range of predicted complexities,
and used them to build new stimuli through repetition,
concatenation and embedding, with the goal of testing
whether their complexity could be predicted from the
complexity of their base shapes. Thus, we designed a
total of 60 images that served as samples in the task :
(1) five base shapes, shown in figure 6; (2) five repetitions
of those base shapes, generated by showing side by side
four copies of the base shape; (3) twenty-five concate-
nations corresponding to all 5x5 pairs of base shapes
placed side by side; and (4) twenty-five embeddings of
a base shape inside another, generated by drawing the
outline of one shape using 8 or 9 copies of the other.
Example stimuli are shown in figure 6.

In a separate group of participants, we also measured the
subjective complexity of the same shapes. We presented
participants with those 60 shapes in random order and
asked them to evaluate each shape’s complexity on a
scale from 0-100.

Method

Participants. Participants were recruited via Twit-
ter. One hundred and seventy adults participated in
the main delayed match-to-sample task (71 male and
99 females), with a breakdown of 16 participants in the
18-25 age group, 77 in the 25-40, 68 in the 50-60 and
9 in the 60+. Participants were not compensated for
participating in this study. An additional 27 adults par-
ticipated in the subjective ratings (15 females and 12
males). Both tasks were approved by CER-Paris-Saclay-
2019-063, and participants gave informed consent.

Procedure and Stimuli for the delayed match-to-
sample task. The procedure for this experiment was
identical to that of our first experiment, and only the
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Figure 6

Stimuli used in experiment 2. A the 5 base
shapes which were presented alone and in combinations,
and the corresponding deviant shapes. B, Examples of
screens presented during the choice phase in the four
conditions of the experiment (randomly intermixed):
single shape, repetition of a base shape, concatenation
of two base shapes, and embedding of a base shape into
another. In each case, the sample image which was
presented during the encoding phase is highlighted, and
the other cells of the 2x3 grid illustrate the diversity
of distractors. A distinct group of subjects also gave
subjective ratings of complexity for each stimulus.

stimuli changed. The stimuli were generated from five
base shapes that were piloted to vary in encoding and
choice time (square, circle, S, sigma, and square root,
of respective MDL 5, 2, 10, 15, 13; see Figure 6). All
shapes had similar amounts of ink, or gray level: the
square, sigma and square root all had four segments of
identical length, arranged differently; the circle matched
the square in length; and the S shape comprised two
semi-circles and was therefore matched with the circle.
Those base shapes were then used to generate the 60
target stimuli for the four experimental conditions: sin-
gle shape (5 stimuli), repetition (a string of 4 identical
shapes; 5 stimuli), concatenation (2 shapes side by side;
5x5=25 stimuli), and embedding (an inner shape was
presented at the usual size, but in 8 or 9 copies that
formed the outlined of a second, outer shape; 5x5=25
stimuli).

Each of those 60 stimuli served as samples for the
delayed match-to-sample task. During the choice pe-
riod, the sample stimulus was intermixed with 5 distrac-
tors, which were generated in order to prevent short-cut
strategies and maximize the need for a full identification
of the target shape. For each base shape, we designed a
local deviant by removing one fourth of the shape (see
Figure 6). For the single shape and the repetition condi-
tions, the distractors were (1) a distractor from the same
condition, but using the local deviant instead of the tar-
get, (2) a distractor from the same condition, but using
a different shape, (3) three distractors drawn from each
of the other three conditions, and sharing at least one
shape with the target. For the concatenation condition,
the distractors were (1) a concatenation distractor where
one of the two shapes was replaced by its local deviant;
(2) two concatenation distractors where either the left or
right shapes were replaced by a different base shape, (3)
one distractor from the embedding condition, using the
same two shapes as the left and right shapes, assigned
randomly to embedded and embedding, (4) one distrac-
tor from the repetition condition, using randomly either
the left or the right shape. Similarly, for the embedding
condition, the distractors were (1) a distractor from the
embedding condition, with the same outer shape but the
inner shape replaced by its local deviant; (2) two em-
bedding distractors where either the outer or the inner
shape was replaced by a different base shape, (3) one
distractor from the concatenation condition, but using
the same two shapes as the inner and outer shapes, (4)
one distractor from the repetition condition, using either
the inner or the outer shape. Our logic was that this set
of distractors covered a broad range of programs in the
proposed language, each with a small local change or
“bug” – thus forcing subjects to search for the shape
whose description exactly matched the sample. Figure
6B shows, for each condition, an example of a target
and its five distractors.

In addition to those 60 trials, 10 initial training trials
allowed participants to get used to the task flow and
to the difficulty level of the memory task. Training tri-
als were generated similarly, but using three different
base shapes and the same exact procedure. The experi-
ment proceeded seamlessly from training to testing tri-
als, without any notice.

Procedure and stimuli for subjective complex-
ity ratings. Upon clicking on a link from the twitter
message, participants landed on an experiment designed
with jsPsych (De Leeuw, 2015). The experiment started
with a consent form as well as a small demographic ques-
tionnaire for age group and sex. Then they were pre-
sented with instructions for the task: using sliders from
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0-100, they had to give a complexity rating to each of
the 60 sample shapes. To familiarize them with the type
of shapes, the instructions included 24 shapes that did
not appear afterward. We highlighted in the instruc-
tions that they should focus on trying to be consistent
across shapes. Participants were then presented with all
60 shapes in a shuffled order. Participants could freely
look at the shapes in any order and change their rating
until they were satisfied. The task took a median time
of 6:34 minutes to answer (1st quartile, 4:48; 3rd quartile,
9:36.).

Results

None of the subjective rating data were rejected. For
the delayed match-to-sample task, the error rate was
low (3.39%), and we removed data following the same
strategies as in experiment 1 (7 participants and 3.16%
trials rejected).

Figure 7 shows the encoding time, choice time, and sub-
jective complexity for each of the 60 stimuli, as a func-
tion of the base shape(s) used to generate them. First,
we verified that, in the single-shape condition, all three
dependent measures varied across the 5 base shapes
we selected (ANOVAs where participants with missing
data were removed, all p<.01). For encoding and choice
times, the increase was roughly monotonic: square and
circle were roughly on par, and then the response times
increased for the S, sigma and square-root shapes, in
this order (note that this is close to, but not strictly
identical to the MDL ordering, which was circle, square,
S shape, square root and sigma). The subjective ratings
followed a noisier profile, but still ranking the last two
shapes as more complex than the first 2.

We then examined whether, when those shapes entered
into more complex stimuli, the complexity still varied
in a similar way, predictable from equations [1-3]. In
the repetition condition with 4 identical shapes, a sig-
nificant, monotonic profile of response was observed
for all three dependent measures (ANOVAs where par-
ticipants with missing data were removed, encoding
time F(4,576)=53.88; response time F(4,576)=36.87;
F(4,104)= 6.63; all p<.001). Similarly, we analyzed
just the stimuli of the concatenation condition where
two identical shapes were placed side by side, thus cor-
responding to a repetition of 2. Again, for all dependent
measures, a significant, nearly monotonic increase was
seen across the 5 base shapes (participants with missing
data removed; encoding time, F(4,576)=32.20; choice
time F(4,576)=41.01, ; subjective F(4,104)=15.29; all
p<.001). Importantly, the curves for single shape, 2
repetitions and 4 repetitions were nearly parallel to each
other, as predicted by our equations for MDL. To test

this idea, we entered all 3 conditions into a mixed-effect
linear model with two main factors and their interac-
tion, i.e. the repeated shape (5 levels), and the number
of repetitions (numerical factor spanning 1, 2 or 4 repe-
titions). As shown in Table 1, we found main effects for
each measure, in agreement with equation [1]. There
was no significant interaction with the number of rep-
etitions for both subjective rating and choice time, in
agreement with equation [1], but encoding time signifi-
cantly interacted with the number of repetitions.

For the concatenation and embedding conditions, as
shown in Figure 7, encoding time, choice time, and sub-
jective complexity also increased with each of the two
shapes involved (left/right or inner/outer). Equations
[2] and [3] predicted that these effects should be similar
to the single shape condition and should not interact.
Table 1 shows the results of mixed effect linear models,
but now with the shapes as two 5-level factors. Starting
with the Concatenation condition, for all 3 dependent
variables, we found significant effects of both the shape
on the left and the one on the right, as predicted, but the
interaction terms were also significant. However, there
was a very simple explanation: the 5x5 design matrix
for concatenation included 5 stimuli in which the left
and right shapes were identical. In this case, our theory
predicts that these stimuli should be more compressible,
and therefore easier to perceive than other concatena-
tion stimuli. This is exactly what we found: as seen in
the middle panels of figure 7 (where, for simplicity, those
data points are connected by a gray line), the repeated
stimuli stood out as faster and subjectively less complex
than the corresponding concatenation stimuli. When we
removed those conditions from the mixed-effect model
(Table 1), the F values for the main effects increased
while those for the interaction decreased massively, al-
though a small but significant interaction remained for
both encoding and choice time.

Finally, we ran the same analysis on the embedding con-
dition, using both embedded and embedding shape as
the 2 factors, plus their interactions. Again, both main
effects were significant on all 3 dependent measures,
as predicted by equation [3]. However, as in the con-
catenation condition, the interaction term had a signif-
icant effect on encoding time and choice time, which
our additive equations did not predict. Inspired by our
analysis of concatenation, we plot separately the “self-
embedding” trials, in which the same shape was used at
the inner and outer levels (e.g. a square of squares, a
circle of circles, etc). In figure 7 (right panels), we can
see that those data points again yielded lower values
than the others (i.e. lower subjective complexity, faster
encoding and choice times). When we excluded those
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Repetition Shape Number Interaction

Subjective
Rating

F4,369=2.95 p=.020 F1,369=11.56 p<.001 F4,369=0.88 n.s.

Encoding
Time

F4,2215.25=4.66 p<.001 F1,2215.10=185.21 p<.001 F4,2215.17=14.86 p<.001

Choice
Time

F4,2215.41=28.31 p<.001 F1,2215.23=35.75 p<.001 F4,2215.31=0.76 n.s.

Concatenation Left shape Right shape Interaction
Subjective
Rating

F4,624=22.16 p<.001 F4,624=16.71 p<.001 F16,624=3.83 p<.001

Including self-
concatenated

Encoding
Time

F4,3796.63=52.88 p<.001 F4,3796.54=45.02 p<.001 F16,3796.56=27.67 p<.001

shapes Choice
Time

F4,3797.13=76.72 p<.001 F4,3796.97=58.94 p<.001 F16,3797.01=25.77 p<.001

Subjective
Rating

F4,494=25.85 p<.001 F4,494=20.80 p<.001 F11,494=0.45 n.s.

Excluding self-
concatenated

Encoding
Time

F4,3004.67=57.78 p<.001 F4,3004.59=50.76 p<.001 F11,3004.66=1.85 p=.041

shapes Choice
Time

F4,3005.32=78.42 p<.001 F4,3005.18=63.97 p<.001 F11,3005.31=2.16 p=.014

Embedding Outer shape Inner shape Interaction
Subjective
Rating

F4,624=66.58 p<.001 F4,624=28.54 p<.001 F16,624=0.90 n.s.

Including
self-embedded

Encoding
Time

F4,3786.68=119.23 p<.001 F4,3786.67=61.62 p<.001 F16,3786.70=3.64 p<.001

shapes Choice
Time

F4,3787.10=115.12 p<.001 F4,3787.08=118.95 p<.001 F16,3787.12=6.74 p<.001

Subjective
Rating

F4,494=55.57 p<.001 F4,494=24.90 p<.001 F11,494=0.42 n.s.

Excluding
self-embedded

Encoding
Time

F4,2996.89=103.49 p<.001 F4,2996.79=55.88 p<.001 F11,2996.82=1.20 n.s.

shapes Choice
Time

F4,2997.45=111.20 p<.001 F4,2997.29=110.49 p<.001 F11,2997.33=3.74 p<.001

Table 1

The table shows the statistics of mixed effect models applied to our three main conditions (Repetition, Concatenation
and Embedding) and to our three dependent variables (Subjective Rating, Encoding time and Choice time). In each
case our model had two main effects and their interaction, plus a single random effect of the participant. P-values
were computed using the Kenward-Roger approximation for degrees of freedom. For Repetition, the main effects
were the repeated shape (5 levels), and the number of repetitions (numerical factor in 1, 2 or 4, respectively for the
shape alone, for the concatenation of two identical shapes, and for the repetition condition). For Concatenation,
the main factors were the shape on the left and the shape on the right. For embedding, the main effects were the
outer/embedding shape, and the inner/embedded shape. For Concatenation and Embedding, we ran the model a
second time after removing the stimuli in which the same base shape was used twice (e.g. two squares, or a square
of squares).
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Figure 7

Results of experiment 2. The three behavioral
measures (encoding time, choice time, and subjective
complexity) are shown for the 60 different stimuli,
grouped into repetition (left), concatenation (middle),
and embedding (right). The conditions are sorted as
a function of base shape complexity. Note that the
single-shape condition is shown in the repetition panel
(number of repetitions = 1), and that the data from the
concatenation of two identical shapes appears twice (as
number of repetitions = 2 in the left panels, and as dots
connected by a gray line in the middle panels). Similarly
the data for ”self-embedded” shapes (e.g. a square of
squares) appear with a gray line in the right panels).
In each panel, we show the coefficient of determination
and statistical significance of the associated model
(equations [1-3] in the main text). Error bars indicate
standard errors across subjects.

self-embedding trials from the mixed-effect model, the
interaction terms again collapsed while the main effects
did not (the interaction did remain significant for choice
time). Although those observations were not predicted,
they can easily be accommodated: it appears that the
mental representation of a “square of squares” involves
a saving, because both the embedded and the embed-
ding shapes are identical, and thus presumably the same
mental program is used twice.

We further tested the predictions of equations [1-3] using
General Linear Models (GLMs). Those equations imply

that we should be able to accurately reconstruct the
complexity of composite shapes from that of the five
base shapes. To test this, we fitted generalized linear
models on each of our dependent variables after averag-
ing data across participants for each item (Figure 7; all
fitted values are provided in Table 2). First, we mod-
eled the repetition conditions (base shape, two shapes,
and four shapes) by predicting, for each dependent mea-
sure, its value for a given trial as a linear function of its
value in the single shape condition and the number of
repetitions. This model was significant for each of our
three dependent variables, and all predictors were sig-
nificantly different from 0 (all p<.05; subjective rating,
R²=.62; encoding time, R²=.90; choice time, R²=.89).
The fitted coefficients for the shape term were all close to
one (non-significantly so for subjective complexity and
choice time, and only slightly larger than 1 for encoding
time), suggesting that base shape complexity was di-
rectly reflected in the complexity of the repeated shape.

Similarly, we modeled the concatenation condition by
predicting the complexity of a trial with a linear combi-
nation of the complexity of the left shape, the complex-
ity of the right shape, and a dummy variable (termed
IsSelf) for whether the left and right shapes were iden-
tical (as these trials are instances of repeat and should
have a lower perceptual complexity). This model was
significant for each of our three dependent variables, and
all predictors were significantly different from 0 (see Ta-
ble 2; all p<.05; subjective, R²=.64; encoding, R²=.85;
choice, R²=.89). The coefficients for both left and right
shapes were not significantly different from 1 at the
p<.05 level, indicating that both contributed equally
and directly, as predicted from equation 2. The IsSelf
predictor was always significantly negative, indicating a
saving when both shapes are identical.

Finally, we applied the same model to our embedding
condition. Again, a good fit was found, with signifi-
cant effects of both shapes for all dependent measures
(see Table 2; all p<0.05; subjective, R²=.53; encoding
R²=.64; choice R²=.86). In this between-items analysis
with only 25 average data points, unlike more powerful
mixed-model approaches, the impact of self-embedding
did not reach significance (subjective rating p=.33; en-
coding time p=.14; response time p=.06). This time,
the slopes tended to be higher than 1, although this
reached significance only in the case of encoding time
for the outer shape. We also observed a trend towards a
larger influence of the outer shape compared to the inner
shape, consistent with the outer shape’s greater visual
impact, but again this effect was only significant in a
single dependent measure (subjective ratings). Those
minor trends notwithstanding, the main finding is that
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the data supported equation [3]: even when we made the
visual pattern much more complex by embedding one
shape inside another, thus creating for instance a circle
of squares, the final complexity was still only a linear
function of the complexity of the individual shapes.

Discussion of experiment 2.

Participants’ behavior matched the additive properties
predicted by equations 1 through 3: the complexity of
complex patterns could be decomposed into the sum
of the complexity of constituents. This property was
observed in three different metrics that we collected as
proxies for the complexity of the mental representation
of shapes: subjective complexity ratings, encoding times
and choice times in a delayed match-to-sample task.

More specifically, and following the equations, the fol-
lowing three results were verified: [1] the complexity
of the mental representation of n identical shapes is the
complexity of the mental representation of the shape, to-
gether with a cost that increases with n; [2] the complex-
ity of the mental representation of two different shapes
side by side is the sum of their respective complexities;
and [3] the complexity of the mental representation of
a shape drawn in outline using several small copies of
a different shape (which we called embedding) is pre-
dicted by the sum of their respective complexities. The
latter finding is the most interesting, as intuition alone
might have predicted a product operation – after all,
the overall pattern comprises as many copies of the in-
ner shape as needed to draw the outer shape. However,
the prediction from the “language of thought” perspec-
tive is clear enough: drawing a square of circles is not
much more complex than drawing a square itself – it
merely requires stopping the square program at regular
intervals to call a subprogram for drawing a circle, and
in first approximation, such embedding only has a lin-
ear effect on total complexity. Of course, this is only
true in first approximation – our “square of circles”, for
instance, comprised additional circles not only at the
vertices of the square, but also in the middle of its sides,
thus requiring a slightly more complex square-drawing
program. Such subtleties, which require further investi-
gation, may explain why the slope measuring the impact
of the outer shape on the complexity of the overall pat-
tern tended to be larger than 1 for embedded shapes
(see Table 2).

Two other salient effects emerged, one which could be
predicted from equations [1-3] and another which could
not. First, when concatenating two identical shapes, the
resulting shape can be either described as a repetition
or as a concatenation – but our language of thought
predicts that programs involving repetition are shorter,

and therefore that the complexity of a pair of shapes
should be lower than predicted by concatenation alone.
Our data supports this prediction: concatenations of
two identical shapes have a lower complexity than pre-
dicted by the sum of the complexities of the two shapes,
each with their respective coefficients, indicating that
identical shapes induce a saving. Second, unexpectedly,
the same phenomenon occurred in the embedding condi-
tion when a shape was outlined using a smaller version
of itself (“self-embed” trials, e.g. a square of squares).
Once again, the data points to the lower complexity
of those trials, compared to those using two different
shapes. Such a saving is not captured by equation [3].
It suggests that in the mental representation of e.g. “a
square of squares”, the two squares may be represented
by a single mental program or at least by some degree of
sharing of working memory resources. This interesting
finding supports the idea that human mental represen-
tations allow for recursive calls or higher-order functions
(functions over functions) (Dehaene et al., 2015; Fitch,
2014; Hauser et al., 2002).

Overall, Experiment 2 goes beyond experiment 1 in
showing that, over and above the specific complexity
predicted by the particular geometrical language we pro-
posed, there are several properties of additivity that
must be satisfied by any such language, and that these
properties are true of the human working memory for
geometric shapes.

General Discussion

Previous research has emphasized that all humans in-
herit, from evolution, core knowledge of space and num-
ber that they share with many other animal species (De-
haene et al., 2006; Feigenson et al., 2004). Here, we
propose that, in humans, those core systems can also
be recombined using a language of thought in order to
form complex mental programs. As a result, humans
are able to form complex, compositional thoughts such
as “three parallel lines”, “repeat a pattern four times”,
or “arrange some circles in the shape of a square”.

In the present work, we argued that such combinatorial
mental representations underlie human perception and
working memory for geometric shapes, and we put this
hypothesis to several tests. First, we proposed a con-
crete language inspired by observations on prehistoric
and ethnographic geometric patterns (featuring abstract
patterns, right angles, parallel lines, circles and spirals)
as well as elements from the core-knowledge literature
(number sense). We tested this language in Experiment
1 and showed that it could predict the behavior of par-
ticipants in a shape memory task, above and beyond
lower-lever perception mechanisms. In Experiment 2,
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Repeat Shape Number of repetitions
Subjective 0.88 ± 0.23** 1.98 ± 0.89*
Encoding 1.37 ± 0.15*** 87.69 ± 16.45***
Choice Time 1.05 ± 0.11*** 47.31 ± 19.1*

Concatenate Left shape Right shape IsSelf
Subjective 0.72 ± 0.2** 0.67 ± 0.2** -8.33 ± 2.37**
Encoding 0.92 ± 0.17*** 0.89 ± 0.17*** -433.15 ± 55.29***
Choice Time 0.96 ± 0.12*** 0.81 ± 0.12*** -521.96 ± 63.28***

Embedding Outer shape Inner shape IsSelf
Subjective 1.84 ± 0.43*** 0.95 ± 0.43* -5.26 ± 5.27
Encoding 1.94 ± 0.45*** 1.83 ± 0.45*** -222.82 ± 148.07
Choice Time 1.29 ± 0.16*** 1.23 ± 0.16*** -169.22 ± 85.43

Table 2

The table shows, for each shape type (repeat, concatenate, and embedding), each dependent variable (subjective
rating, encoding time or choice time), and for each variable in the model (in columns), the value of the regression
slope, associated standard error, and whether the effect is significantly different from 0 (*, p<.05; **, p<.01; ***,
p<.001).

we further showed that theoretically motivated additive
equations for the complexity of composite shapes charac-
terize humans’ subjective ratings and objective behavior
in a delayed match-to-sample task, thereby constraining
the properties that any proposition for a language of
thought for geometric shape must satisfy.

The proposed theory of shape perception requires an
explanation for how one can efficiently go from a visual
percept to a mental program, a problem referred to as
program induction. The idea that humans infer mental
programs was previously shown to successfully account
for human concept learning (Lake et al., 2015), includ-
ing hand-drawn sketches (Ellis et al., 2018). However,
program induction is also a computational challenge in
computer science. Enumerating all possible programs
until a match is discovered is not a plausible strategy,
as the search time would scale exponentially with the
size of the program. We show how recent work from the
program-induction literature helps tackle this problem
by using DreamCoder (Ellis et al., 2021) to find the best
representation for several shapes. DreamCoder uses a
bottom-up neural network to speed up the search for
the relevant program. In DreamCoder, the network is
trained to map each visual shape onto biases that ac-
celerate the search for the relevant program. Future
versions could incorporate direct mappings from shapes
to programs, thus leading to the immediate recognition
of shapes close enough to the training set. What is re-
markable about this idea is that the system does not

need any external training data (although successfully
solved problems will be used when training, much like
replays, in addition to “dreams”): it can generate its
own supervised learning dataset by sampling programs,
executing them to produce the corresponding shapes,
and then training a neural network to perform the back-
ward inference from shape to program. The notion of
“inner training” is an interesting metaphor for how hu-
mans may explore, in a purely mental manner, the do-
main of geometry and discover interesting properties on
their own, without external inputs. This is possible if
we assume, as René Descartes did in the introductory
citation, that our mind already has the ideas, at least in
the form of a large space of potential mental programs.

To further accelerate its search, the DreamCoder algo-
rithm looks for subprograms that are reused across sev-
eral shapes. This mechanism is useful to go from simple
shapes to more and more complex ones, as each new
success offers the possibility of discovering new abstrac-
tions. This mechanism changes the topography of the
search space by bringing certain shapes (those that lever-
age the discovered abstractions) closer to the effectively
searchable threshold for program induction: while all
shapes remain accessible, some of them become much
simpler as they can be expressed more succinctly using
the discovered abstractions. This mechanism could ex-
plain cultural drifts in the style of geometrical patterns,
whereby a given human culture focuses on certain shapes
and their variants, thus producing, over time, a variety
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of similar-looking patterns.

The core of our proposal builds upon seminal work by
Leyton (Leyton, 1984, 2003), who proposed a genera-
tive theory of shapes. Leyton’s theory stipulates that
all shapes are constructed in a bottom-up fashion by a
sequence of operations, called “control groups”, starting
from a single point. For example, the mental represen-
tation of a cube would be the extrusion across the z-axis
of a square, which itself would come from turning a seg-
ment 4 times around a central point. The segment itself
would be built by translating the starting point along an
axis. The unpublished experiments briefly mentioned
by Leyton (1984), however, seem to have probed those
hypotheses only indirectly, for example by asking par-
ticipants to perform intuitive judgements about the sta-
bility of certain shapes. While less general and confined
to two dimensions, our proposal is supported by direct
empirical tests of the mental complexity of shapes.

Earlier work by Leeuwenberg (Leeuwenberg, 1971) also
introduced a language for shapes, particularly focused
on the idea of nested repetitions with variations, and
the concept of continuous integration as a complement
of discrete repetition capable of tracing curves. How-
ever, Leeuwenberg’s language only satisfied one direc-
tion of the intended correspondence between mental and
linguistic complexity: the language was such that low-
complexity mental representation corresponded to short
programs, but the converse was not true as some short
programs generated shapes that were not easily parsed
by humans. Nevertheless, the behavioral results he re-
ported are in line with ours: he found the length of
the shortest program is a good predictor of subjective
ratings of complexity, as well as objective performance
in shape copying and other similar tasks (Boselie &
Leeuwenberg, 1986; Leeuwenberg, 1969, 1971; see also
Restle, 1970, 1973).

More recently, several articles highlighted the impor-
tance of the notion of repetition with variation in the
human perception of geometric and auditory sequences
(Amalric et al., 2017; Piantadosi et al., 2016; Planton
et al., 2021; Roumi et al., 2021; Simon, 1972). The lan-
guage first proposed by Amalric et al. (2017) included
two distinct notions of repetitions with variations, ei-
ther changing the starting point with each repetition,
or changing a parameter with each repetition. Our geo-
metric language generalizes this idea to the case of con-
tinuous curve tracing. Our tracing primitive can be con-
sidered a particular case of infinitesimal repetition with
variation: at each time step, parameters are updated for
the computation of the next time step. Importantly, we
did not allow for arbitrary infinitesimal repetition like
what is present in the Logo language (Abelson et al.,

1974), where at each time step arbitrary computations
can occur. While such computations were required in
the original logo in order to draw curves by infinitesi-
mally changing the heading at each time step, it also
opened the possibility of very small programs having
extremely complex outputs. By limiting ourselves to
simple, linear variations of speed or turning angle over
time, our language fits with the universal presence of a
limited set of shapes (mostly lines, circles and spirals)
in human geometric patterns.

Another, more speculative aspect of our proposal is that
a recursively compositional language of thought for ge-
ometry is unique to humans. As also proposed by others,
only humans would possess a recursive compositional
capacity (Dehaene et al., 2015; Fitch, 2014; Hauser et
al., 2002; Penn et al., 2008). Our recent work (Sablé-
Meyer et al., 2021) shows that, for quadrilaterals, hu-
man behavior differs strikingly from baboons and is
characterized by a symbolic geometrical regularity ef-
fect: in humans only, regular quadrilaterals (which can
be compressed in the present language) are easier to
perceive than less regular ones. Importantly, in this
work, baboon behavior was not random, but could be
captured by models of the ventral visual pathway for
object recognition. Furthermore, in preschoolers and
in human adults without formal education, both the ob-
ject recognition model and the symbolic geometry model
were jointly needed to account for behavior. Thus, two
strategies seem to be available for geometric shape per-
ception: a purely visual strategy, available to both ba-
boons and humans, and a symbolic geometry strategy,
putatively available only to humans. It is important
to take this dual-route model into consideration when
testing the present idea: if the stimuli can be too easily
discriminated by object recognition alone, then humans
may not make the effort to encode them symbolically, in
the proposed language of thought, and MDL may cease
to determine performance (as we observed in pilot data).

We do not yet have non-human primate data testing the
current proposal, but a preliminary data set correspond-
ing to experiment 1 was recently collected in baboons, in
collaboration with Joel Fagot, and the results conform
to our hypothesis: baboon behavior was driven by visual
similarity alone, without any influence of MDL in our
language of thought, contrary to humans.

Limits of our language

Simple arguments show that the proposed language can
generate most of the shapes that humans find simple
and that are frequently attested in human cultures as
well as in the history of geometry. Any regular poly-
gon, for instance, such as an equilateral triangle, can be
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generated by a program similar to the square, but using
fractions of a right-angle turn; the pseudocode would
read: Repeat p times { Trace ; Turn(angle=4/p ) }.
Stars with various numbers of branches can be similarly
generated. Less regular polygons, such as a rectangle
approximating the proportions of the famous golden sec-
tion, can be generated using fractions (e.g. 5/3 or 8/5).
Symmetrical patterns and friezes, such as � (svastika) or

arise naturally from recursive combinations of repe-
titions and alternations. Finally, using concatenation or
embedding, these patterns can be combined to generate,
for instance, a pentagram (star inside a circle), a circle
of circles, etc.

Nevertheless, some simple figures remain difficult to gen-
erate with a short program. A trapezoid, for instance,
comprises two parallel sides interrupted by two arbitrary
segments. Drawing a trapezoid in our language requires
a turn by an arbitrary angle 𝛼, followed by a second
turn by 2-𝑎𝑙𝑝ℎ𝑎 to restore parallelism. However, our
language does not have variables that could store the
value 𝑎𝑙𝑝ℎ𝑎, and hence does not find this shape simpler
than an arbitrary quadrilateral with turns 𝑎𝑙𝑝ℎ𝑎 and
𝛽. In general, our approach is unable to encode a par-
tial regularity inside an otherwise arbitrary figure. The
addition of local variables could address this limitation,
but exploration of this idea suggested that straightfor-
wardly adding variables has a high cost: while they allow
one to express otherwise hard to describe simple shapes,
they also make very complex shapes easy to describe, an
undesirable feature that is hard to keep in check.

There are also shapes for which our language proposes
implausible programs. For instance, the minimal pro-
gram that draws a + shape repeats four segments start-
ing from the center, instead of drawing the shape using
two intersecting segments. As for continuous shapes,
our program cannot account for some simple shapes such
as the ellipse or parabola. These shapes might be better
represented as visual transformations of the outputs of
another program (e.g. compressing a circle to get an
ellipse). Such a dual-mode system, combining the gen-
erative and transformative capacities of mental imagery,
has been proposed by others (e.g. Kosslyn, 1980; Leyton,
2003; Shepard & Cooper, 1982). The addition of a buffer
in which mental operations such as rotations or shearing
could be applied would be an important addition to the
present work.

Future directions

We see two promising ways forward to go beyond the
present work. One, drawing inspiration from Kosslyn,
Shepard and Leyton’s work, would allow for further men-
tal manipulation of the outputs of the present language,

thus performing operations such as deformations, rota-
tions, or even extrusions as a post-processing step. This
would open up to the modeling of 3-D shape, for instance
using rotation around a fixed axis. Another possibility
would be to integrate ideas from a different program-
ming paradigm. Currently, our programs are imperative
in nature: they describe, in every detail, the sequence
of operations needed to draw a shape. However, not all
programming languages work that way. Logic program-
ming languages such as Prolog describe the logic of the
computation and its constraints rather than the details
of its execution flow. Such constraint-based program-
ming may be closer to how humans think, particularly
in the mathematical domain. The canonical definition of
a circle, for instance, involves a constraint (equidistance
from a center point) rather than a generative program
(turn by a fixed curvature, as in the present language).
Integrating both declarative and imperative elements
may provide a better account of specific shapes, such as
trapezoids or generic triangles, which only possess some
properties (e.g. two parallel sides, or three sides) while
leaving the other details unspecified. Some geometrical
shapes could thus be defined in terms of properties that
they satisfy, others in more detailed imperative instruc-
tions, and both could be reused in control structures
such as embed or repeat. Meanwhile, we surmise that
the present proposal merely brings us one step closer to
understanding how mathematical objects are mentally
encoded.
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The reader can test our language for geometric shapes
by using the following online interpreter: https://priv
ate.unicog.org/msm/LoT_Geometric_Shapes.html
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