
2024 Aug 6 by Dustin Getz - https://twitter.com/dustingetz

The biggest remaining barrier to adopting today is that it requires users

to write . Some users have been willing to accept and set aside this

issue while we deal with it but many cannot, they see writing macros as an

insurmountable problem and that the technology is brittle or a hack.

Electric Clojure

So, today we are thrilled to finally say: The root of

the problem (that v3 solves) is what we call : when an Electric

program implies a network topology that is different than the one that the programmer

wants.

The easiest way to understand the new semantics is to understand what’s wrong with

the old, so let’s start there.

Consider this (broken) Electric v2 code:

• There’s server state - a database connection

• There’s client state - a search box, bound to an atom

• We render a view, and the view queries the database with the search state

#?(:clj (def !conn (d/create-conn ...))) ; database on server (e/defn

RenderView [search db] (e/client (js/console.log "querying with filter:

" search) (dom/div (dom/text (e/server (query-database search db))))))

(e/client (let [db (e/server (e/watch !conn)) !search (atom "") search

(e/watch !search)] (dom/input (dom/on! "keydown" (fn [e] (reset! !search

Clojure

/ Electric Clojur…Electric Cloj…

Electric Clojure v3 teaser: improved transfer semantics (2024) https://hyperfiddle-docs.notion.site/Electric-Clojure-v3-tease...

1 of 7 8/19/24, 16:14

https://twitter.com/dustingetz
https://twitter.com/dustingetz
https://github.com/hyperfiddle/electric
https://github.com/hyperfiddle/electric
https://hyperfiddle-docs.notion.site/225b4433bf6a4a14a9a9c6d0637ee13d?v=5ae42136f4eb4d6997c92db9181fe4be&pvs=18
https://hyperfiddle-docs.notion.site/225b4433bf6a4a14a9a9c6d0637ee13d?v=5ae42136f4eb4d6997c92db9181fe4be&pvs=18
https://hyperfiddle-docs.notion.site/225b4433bf6a4a14a9a9c6d0637ee13d?v=5ae42136f4eb4d6997c92db9181fe4be&pvs=18
https://hyperfiddle-docs.notion.site/225b4433bf6a4a14a9a9c6d0637ee13d?v=5ae42136f4eb4d6997c92db9181fe4be&pvs=18

(-> e .-target .-value))))) (RenderView. search db) #_(RenderView.

search (e/server (e/watch !conn)))))

Aside for newcomers: Electric can be quickly understood as “streaming lexical and
dynamic scope” – so here, as search updates, the idea is to stream it to the server,
update the server query, stream the result back into the client to render to the dom, in
basically a big streamy loop as data flows from client to server and back. The dataflow
topology is no different than that of any web app, Electric simply expresses the same thing
more fluently.

Undesired transfer in Electric v2 happens in two ways:

1. let This let is client-sited,

so Electric attempts to transfer the result of (e/server (e/watch !conn)) to the

client to be bound to the name db , and fails to serialize db in the process because

it is an unserializable reference type.

2.

For example, this call (RenderView. search (e/server (e/watch !

conn))) is client-sited, therefore Electric attempts to first transfer the result of (e/

watch !conn) (a database reference) to the client before booting RenderView with

all client side args, and again the expr (being a database reference) will fail to

serialize.

We can work around the issues by refactoring the program with these rules in mind:

(e/server (let [db (e/watch !conn)] (e/client (let [!search (atom "")

search (e/watch !search)] (dom/input (dom/on! "keydown" (fn [e] (reset!

!search (-> e .-target .-value))))) (e/server (RenderView. search

db))))))

• split the let into two forms, one for each site

• move the RenderView call to server authority, so db is not transferred by function

boot

But watch out, this refactor is not just inelegant, it has also introduced a

: it transmits search to the server , because the (js/console.log

Clojure

Electric Clojure v3 teaser: improved transfer semantics (2024) https://hyperfiddle-docs.notion.site/Electric-Clojure-v3-tease...

2 of 7 8/19/24, 16:14

: it transmits search to the server , because the (js/console.log

"querying with filter: " search) also needs search on the client, but now all

RenderView ’s args have been forced to the server, so Electric v2 will now send search

back to the client! (So, search went client → server → client for no reason.)

At this point you end up needing to write macros to control placement by very carefully

 (and note the painful Hungarian notation to

keep track of argument color):

(defmacro render-view [search-C db-S] ; notational bookkeeping :(`(e/

server (let [db# ~db-S] ; unquote db on server (e/client (let [search#

~search-C] ; unquote search on client (js/console.log search#) (dom/div

(dom/text (e/server (query search# db#)))))))))

Obviously not great. Especially given our belief that functional composition is the

fundamental basis for creating non-leaky abstractions, Electric v2 lambdas are clearly

not living up to our mission.

And this problem is not just theoretical. Imagine a reusable datagrid component, which

is parameterized by various higher order fns for querying, rendering, sorting, filtering,

pagination. , we cannot pass them as arguments like we do with

closures. So once we start needing to use macros instead of functions, it’s pretty much

game over for abstraction: we’ve lost the very primitive—lambda—that we set out to build

in the first place.

We spent about a year dealing with this, and are happy to now demonstrate that Electric

v3 fixes it!

In Electric v3, network transfer (i.e. of a value from server to client) is driven by

, because that—platform interop—is the essential reason why a

computation must occur in one place versus another.

For example, a platform call like (datomic.api/q db) (JVM platform) or

(.createTextNode js/document "") (browser platform) is inherently , i.e. those

Clojure

Electric Clojure v3 teaser: improved transfer semantics (2024) https://hyperfiddle-docs.notion.site/Electric-Clojure-v3-tease...

3 of 7 8/19/24, 16:14

(.createTextNode js/document "") (browser platform) is inherently , i.e. those

vars are only available on the server or client classpaths respectively.

Siting is essential complexity (arguably essence of a distributed system), and

consequently we as programmers are hyper-aware of where (at which site) our effects

must run, and we require perfect control over their placement.

And as far as placement goes, other than the location of the interop call, nothing else

matters. If we write:

(e/client (let [db (e/server (e/watch !conn))] (e/server (datomic.api/q

db ...))))

the let conceptually is abstract symbolic plumbing; we do NOT want the fact that we

assigned a to an expression’s result, to infect the by changing

it’s site!

Therefore, in Electric v3, e/client and e/server forms only influence the site of

actual Clojure/Script interop calls. Plumbing and abstraction forms such as let and

e/fn no longer have any significance in determining network transfer. e/client and

e/server have no impact on these expressions.

Summary: “Interop is sited, edges are not”

• = clojure/script interop, e.g. atom , swap! , println , dom/text , vector ,

inc , clojure.core/+ , e/watch , clojure.core/fn

◦Any and all clojure/script calls, not just side effecting calls (println , dom/

text) but also pure calls (inc , vector , mapv)

◦Another word for clojure/script interop is = any computation

that ultimately happens on the host platform (java or js). This includes

computations over collections, strings, dates, numerics!

• = points of sharing in the reactivity graph, e.g. let , e/fn arguments,

binding

◦ the purpose of let , binding etc in Electric is to bind a symbolic name to an

Clojure

Electric Clojure v3 teaser: improved transfer semantics (2024) https://hyperfiddle-docs.notion.site/Electric-Clojure-v3-tease...

4 of 7 8/19/24, 16:14

expression so that its result can be efficiently shared and reused across multiple

downstream consumers.

◦ The ultimate consumer that forces resolution of these bindings is a platform

effect, and that effect is either on the same site (no transfer) or on a different site

(needing transfer). And as the programmer, the new Electric v3 semantics put

you in control of this.

As of this writing, Electric v3 fns are called with $ not new . Yes, the old syntax was

very cute and highlighted an illuminating symmetry with OOP. But on the other hand, the

overloaded syntax made it difficult to give a good error message when illegally

attempting to call an Electric function from Clojure function. We’ll see where we end up.

Electric Clojure v3 teaser: improved transfer semantics (2024) https://hyperfiddle-docs.notion.site/Electric-Clojure-v3-tease...

5 of 7 8/19/24, 16:14

0:00

Electric Clojure v3 teaser: improved transfer semantics (2024) https://hyperfiddle-docs.notion.site/Electric-Clojure-v3-tease...

6 of 7 8/19/24, 16:14

 No hard date yet, we’re currently upgrading all our apps and fixing

regressions as we find them. Soon!

Electric Clojure v3 teaser: improved transfer semantics (2024) https://hyperfiddle-docs.notion.site/Electric-Clojure-v3-tease...

7 of 7 8/19/24, 16:14

https://gist.github.com/dustingetz/0ecd64f41ded68477a1f2952eeb9b203
https://gist.github.com/dustingetz/0ecd64f41ded68477a1f2952eeb9b203

