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ABSTRACT:
This experiment studies the deflection of beams under point loads for cantilever and simply supported configurations. In this

experiment, we will study the effects of material stiffness on beam deflection. We applied steadily increasing loads to
cantilever beams of aluminum, brass, and steel in order to investigate the effect of material stiffness. Then, we analyzed
simply supported beams under different loads and span lengths. We compared these experimental results with theoretical

predictions of Euler–Bernoulli beam theory, stated by the equations δ = WL3

3EI
for cantilever beams and δmax = WL3

48EI
for

simply supported beams loaded with a central point load. By measurement, the relations of load–deflection are linear, and
deflection varies cubically with span length. The study confirms theory, yet points out some practical factors: conditions of

support and precision of measurement. Therefore, we opted for a continuum.

I. INTRODUCTION

This laboratory report outlines the experiment car-
ried out to investigate the deflection of beams, loaded
and supported in different ways, using the ”Deflec-
tions of Beams and Cantilevers” apparatus available
in TecEquipment. The report also examines two ba-
sic structural types: cantilevers and simple supported
beams. Beam deflection is an essential area of structural
mechanics, as it is closely related to structural safety,
performance, and soundness of such varied structures as
bridges, buildings, machines, and airplane wings.

The main aims of this experimental research are to in-
vestigate the relationship between the applied load, the
geometry of the beam, material properties, and defor-
mations, as well as to validate the classical beam bend-
ing theory. More specifically, the experimentation seeks
to investigate the variation in deflection with the appli-
cation of a higher point load for both cantilevers with
diverse material properties, such as aluminum, brass,
and steel, and for simple supported beams with diverse
bridge spans. These underlying theoretical foundations,
which relate to Euler-Bernoulli Beam Theory, expressed
in terms of mathematical formulae including Young’s
Modulus E and Second Moment of Area I, need to be
verified.

By comparing the experimental values for deflection
with their theoretical values, this report aims to ver-
ify the validity of the equations, determine how mate-
rial stiffness and geometry both factor into equation E
and I, and examine considerations for designing a struc-
ture based on these real-world experiments. The report
is organized to cover the theory, methodology, results,
analysis, and conclusion of these real-world experiments,
serving to integrate theoretical engineering concepts with
real-world observations.

II. THEORY

II.1. Fundamental Principles of Beam Bending

When a beam is loaded from the side, it bends and
moves away from its original neutral axis. Several im-
portant things affect how much this deflection happens:

• Load Magnitude (W): Directly proportional to
deflection.

• Beam Geometry: Length (L) and cross-sectional
properties.

• Material Properties: Stiffness characterized by
Young’s Modulus (E).

• Support Conditions: Determines the distribu-
tion of bending moments.

The theoretical foundation for beam deflection anal-
ysis is established by the Euler–Bernoulli beam theory,
which posits that plane sections retain their flatness and
perpendicularity to the neutral axis post-bending.

II.2. Key Parameters and Formulas

Second Moment of Area (I)

For a rectangular cross-section beam:

I =
bd3

12

Where:

• b = width of the beam (m)

• d = depth/thickness of the beam (m)

• I = Second moment of area (m4), which quantifies
the beam’s resistance to bending
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Young’s Modulus (E)

E =
Stress

Strain

• Material property indicating stiffness (N m−2 or
Pa)

• Higher values of E indicate stiffer materials and
therefore less deflection for the same applied load

II.3. Conversion of Applied Mass to Load

P = mg

Where:

• m = mass (kg)

• g = acceleration due to gravity (9.81 m s−2)

For the experiment:

P (N) = mass (g)× 0.00981

II.4. Experiment 1: Cantilever Deflection

A cantilever beam is a beam that is fixed at one end
and free at the other. When a point load P is applied
at a distance a from the fixed end, the beam undergoes
bending, resulting in deflection.

For a cantilever beam of Young’s modulus E and mo-
ment of inertia I, the deflection at the point of load ap-
plication is given by:

δ =
Pa3

3EI

where,

• δ = deflection at the point of load (m)

• P = applied load (N)

• a = distance of load from the fixed end (m)

• E = Young’s modulus of the material (Pa)

• I = moment of inertia of the beam cross-section
(m4)

The moment of inertia for a rectangular cross-section
is:

I =
bt3

12

where b is the breadth and t is the thickness of the beam.

II.5. Experiment 2: Simply Supported Beam

A simply supported beam is a beam supported at both
ends such that it is free to rotate but not translate verti-
cally. When a point load P is applied at the mid-span of
the beam, bending occurs, producing maximum deflec-
tion at the center.
For a simply supported beam of length L, Young’s

modulus E, and moment of inertia I, the maximum de-
flection at mid-span due to a central point load is given
by:

δmax =
PL3

48EI

where,

• δmax = maximum deflection at mid-span (m)

• P = applied load (N)

• L = span length of the beam (m)

• E = Young’s modulus of the material (Pa)

• I = moment of inertia of the beam cross-section
(m4)

For a rectangular cross-section,

I =
bt3

12

where b is the breadth and t is the thickness of the beam.

II.6. Experiment 3: Maxwell’s Reciprocity
Theorem using Fixed-Fixed Beam

Maxwell’s Reciprocity Theorem states that:

In a linearly elastic structure, the deflection
at point A due to a load applied at point B is
equal to the deflection at point B due to the
same load applied at point A.

Mathematically,

δAB = δBA

where,

• δAB = deflection at point A due to load at point B

• δBA = deflection at point B due to load at point A

For a fixed–fixed beam of length L, Young’s modulus
E, and moment of inertia I, the deflection at a point x
due to a point load P applied at a distance a from the
left fixed end is given by:
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Case I: x < a

δx =
Px2(L− a)2(3a− x)

6EIL3

Case II: x > a

δx =
Pa2(L− x)2(3x− a)

6EIL3

III. PROCEDURE

The experiments were conducted to study beam de-
flection under different support conditions, namely sim-
ply supported, cantilever, and fixed–fixed beams. The
detailed procedure followed for each case is given below.

Experiment 1: Simply Supported Beam with
Central Point Load

1. The beam was placed on two knife-edge supports
to form a simply supported condition.

2. A dial gauge was positioned at the mid-span of the
beam to measure vertical deflection.

3. The initial dial gauge reading was noted without
applying any load.

4. A weight hanger was suspended at the center of the
beam and known loads were added incrementally.

5. For each load increment, the corresponding deflec-
tion at mid-span was recorded.

6. The procedure was repeated for different beam ma-
terials.

Experiment 2: Cantilever Beam with Point Load

1. One end of the beam was rigidly clamped to form
a cantilever arrangement.

2. A dial gauge was fixed at the specified distance
from the fixed end to measure deflection.

3. The initial dial gauge reading was recorded before
applying any load.

4. A point load was applied at a known distance from
the fixed end using a weight hanger.

5. The deflection corresponding to each load incre-
ment was noted.

6. The experiment was repeated for different beam
materials.

Experiment 3: Verification of Maxwell’s Reciprocity
Theorem (Fixed–Fixed Beam)

1. The beam was rigidly fixed at both ends to ensure
fixed–fixed boundary conditions.

2. Two dial gauges were placed at two predetermined
locations along the beam.

3. A known load was applied at the first location and
the deflection at the second location was recorded.

4. The same load was then applied at the second lo-
cation and the deflection at the first location was
measured.

5. The above steps were repeated for different load
values.

6. The deflections obtained in both cases were com-
pared to verify Maxwell’s reciprocity theorem.

IV. EXPERIMENTAL SETUP

FIG. 1: Structures Test Frame with mounting tracks
and securing nuts

IV.1. Test Specimens

• Beams of Three Different Materials:

– Aluminum beam

– Brass beam

– Steel beam

• Cross-sectional Dimensions: Rectangular pro-
file with constant width and depth for all beams
(to be measured experimentally)
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IV.2. Loading Equipment

• Calibrated Mass Set: 100 g, 200 g, 300 g, 400 g,
and 500 g masses

• Mass Conversion: Load calculated using gravi-
tational acceleration

g = 9.81 m s−2

IV.3. Measurement Tools

• Vernier Caliper: For precise measurement of
beam width and depth

• Ruler/Scale: Integrated on the apparatus for ac-
curate positioning

IV.4. Apparatus Configuration

The experimental setup consists of a vertical back-
board is mounted securely inside a rigid frame for testing.
The backboard features:

• Horizontal and Vertical Scales: For precise po-
sitioning of all components

• Sliding Bracket System: The system permits
the use of the digital dial. The test indicator that
can move and lock anywhere along the beam

• Clamp Mounting Holes: Used for creating fixed
(cantilever) supports

• Knife-edge Tracking Channels: Enable smooth
positioning of supports and load points

IV.5. Setup for Different Beam Configurations

Cantilever Setup

• One end of the beam is secured rigidly in the clamp

• Load is applied via a knife-edge hanger at a fixed
distance (100 mm) from the support

• Dial indicator is positioned where the load is ap-
plied.

Simply Supported Beam Setup

• Beam rests on two movable knife-edge supports

• Load is applied at mid-span using a central knife-
edge hanger

• Dial indicator is positioned at the center to measure
maximum deflection

Fixed–Fixed Beam Setup

• Both ends of the beam are rigidly clamped to pre-
vent rotation and translation.

• Two knife-edge hangers are positioned at specified
distances from one fixed end (e.g., 200 mm and 400
mm).

• Load is applied alternately at one hanger while de-
flection is measured at the other.

• Dial indicators are mounted at both locations to
record vertical deflections.

• The procedure is repeated by interchanging the
load and measurement points to verify Maxwell’s
reciprocity theorem.

V. WORKING PRINCIPLE OF THE SETUP

V.1. Measurement System

• Digital Dial Test Indicator: A spring-loaded
plunger touches the bottom of the beam. The
plunger pulls back as the beam bends down, turn-
ing mechanical movement into a digital readout.

• Positioning System: With reference to the back-
board scales, thumbnuts are used to secure sup-
ports, load points, and indicators in place as they
slide along U-section channels.

V.2. Loading Mechanism

• Knife-edge Hangers: Ensure precise single-point
load application

• Mass Loading: Calibrated masses apply known
forces calculated using:

W = mg

V.3. Support Conditions

• Clamps: Provide fixed support with zero deflec-
tion and zero slope for cantilever configuration

• Knife-edge Supports: Provide simple supports
with zero deflection and free rotation for simply
supported configuration

V.4. Frame Function

• Provides rigid mounting for the backboard
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• Ensures stability during loading

• Minimizes external vibration effects

• The tapping procedure mentioned in the equipment
manual helps overcome static friction in the indi-
cator mechanism, ensuring accurate readings

VI. CALCULATION

VI.1. Rectangular Cross-Section - Moment of
Inertia Determination

For a rectangular cross-section:

I =
bt3

12

I =
(19.2× 10−3)(3.1× 10−3)3

12

I = 4.812× 10−11 m4

VI.2. Load Magnitude Calculation

P = mg

For the experimental loading condition:

P = 100 (g)× 0.009807 = 0.9807 N

VI.3. Simply Supported Beam - Midspan
Deflection Expression

δ =
PL3

48EI

Given:

L3 = (0.4)3 = 0.064 m3

δ =
P × 0.064

48× 69× 109 × 4.812× 10−11

δ = P × 0.000408 m

VI.4. Cantilever Beam - Free End Deflection
Formula

δ =
Pa3

3EI

a3 = (0.1)3 = 0.001 m3

δ =
P × 0.001

3× 207× 109 × 4.812× 10−11

δ = P × 3.18× 10−5 m

VI.5. Maxwell’s Reciprocal Theorem - Fixed-Fixed
Beam Configuration

Deflection Computation at Arbitrary Point x

δx =
Px2(L− a)2(3a− x)

6EIL3

x = 0.2 m, a = 0.4 m, L = 0.6 m

x2(L− a)2(3a− x) = (0.2)2(0.2)2(1.2− 0.2) = 0.0016 m4

δ =
P × 0.0016

6× 105× 109 × 4.812× 10−11 × (0.6)3

δ = P × 0.000229 m

VII. RESULTS AND EXPERIMENTAL
OBSERVATIONS

VII.1. Simply Supported Beam Analysis

The deflection measurements for simply supported
beam configurations across three materials are presented
in the following tables. All three materials exhibited a
linear proportional relationship between applied load and
measured deflection, validating the fundamental assump-
tions of Euler-Bernoulli beam theory.

TABLE I: Deflection of Aluminium Beam (Simply Sup-
ported)

Mass (g) Act. (mm) Theor. (mm) Error (%)

0 0.00 0.00 0.0

100 0.39 0.44 11.4

200 0.81 0.89 9.0

300 1.15 1.33 13.5

400 1.47 1.77 16.9

500 1.79 2.21 19.0
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TABLE II: Deflection of Brass Beam (Simply Supported)

Mass (g) Act. (mm) Theor. (mm) Error (%)

0 0.00 0.00 0.0

100 0.32 0.26 23.1

200 0.62 0.52 19.2

300 0.95 0.79 20.3

400 1.21 1.05 15.2

500 1.51 1.31 15.3

TABLE III: Deflection of Mild Steel Beam (Simply Sup-
ported)

Mass (g) Act. (mm) Theor. (mm) Error (%)

0 0.00 0.00 0.0

100 0.14 0.13 7.7

200 0.31 0.27 14.8

300 0.45 0.40 12.5

400 0.58 0.53 9.4

500 0.79 0.67 17.9

The results demonstrate that aluminium exhibited the
highest deflection values, followed by brass, with mild
steel displaying minimal deflection under identical load-
ing conditions. This ordering reflects the inverse relation-
ship between Young’s modulus and deflection magnitude.
Error percentages remain within acceptable experimen-
tal limits for laboratory-scale investigations, with most
values below 20%.

VII.2. Cantilever Beam Deflection (Load Applied
at 100 mm)

Cantilever beam deflection data for all three materials
tested are presented in the following tables. The can-
tilever configuration yielded larger deflections relative to
the simply supported case due to the absence of a sup-
port point at the free end, thereby reducing the overall
structural stiffness of the system.

TABLE IV: Deflection of Mild Steel Beam (Cantilever)

Mass (g) Act. (mm) Theor. (mm) Error (%)

0 0.00 0.00 0.0

100 0.07 0.033 71.0

200 0.11 0.067 64.0

300 0.16 0.100 60.0

400 0.20 0.133 50.4

500 0.25 0.167 49.7

TABLE V: Deflection of Aluminium Beam (Cantilever)

Mass (g) Act. (mm) Theor. (mm) Error (%)

0 0.00 0.0 0.0

100 0.15 0.1 50.0

200 0.23 0.2 15.0

300 0.41 0.3 36.7

400 0.53 0.4 32.5

500 0.67 0.5 34.0

TABLE VI: Deflection of Brass Beam (Cantilever)

Mass (g) Act. (mm) Theor. (mm) Error (%)

0 0.00 0.00 0.0

100 0.15 0.07 114.3

200 0.25 0.13 93.3

300 0.35 0.20 75.0

400 0.45 0.26 73.1

500 0.53 0.33 60.6

The cantilever beam configuration shows larger dis-
crepancies between theoretical and experimental values
compared to the simply supported case. This elevated
error, particularly in the brass specimen (up to 114.3%),
suggests that the cantilever boundary condition is more
sensitive to deviations such as support compliance and
initial beam curvature. The aluminium cantilever exhib-
ited more consistent behavior with errors ranging from
15.0% to 50.0%.

VII.3. Fixed-Fixed Beam: Reciprocal Loading
Verification

To validate Maxwell’s reciprocal theorem, the fixed-
fixed brass beam was subjected to two loading scenarios.
The reciprocal deflections are presented in the following
tables.

TABLE VII: Fixed-Fixed Beam: Deflection at 200 mm
(Load at 400 mm)

Mass (g) Act. Def. (mm) Theor. Def. (mm)

0 0.00 0.00

100 0.14 0.24

200 0.27 0.48

300 0.42 0.72

400 0.55 0.97

500 0.67 1.21
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TABLE VIII: Fixed-Fixed Beam: Deflection at 400 mm
(Load at 200 mm)

Mass (g) Act. Def. (mm) Theor. Def. (mm)

0 0.00 0.00

100 0.13 0.24

200 0.30 0.48

300 0.41 0.72

400 0.54 0.97

500 0.67 1.21

TABLE IX: Reciprocal Error Analysis: Maxwell’s Theo-
rem Validation

Mass (g) Case I (mm) Case II (mm) Error (%)

0 0.00 0.00 0.0

100 0.14 0.13 7.69

200 0.27 0.30 10.0

300 0.42 0.41 2.44

400 0.55 0.54 1.85

500 0.67 0.67 0.0

The reciprocal deflection analysis demonstrates excel-
lent agreement between the two loading cases, with er-
ror percentages declining from 10.0% at lower loads to
0.0% at 500 g. This progressive improvement validates
Maxwell’s reciprocal theorem, establishing that the de-
flection at point B due to a unit load at point A equals the
deflection at point A due to the same unit load at point
B. The convergence toward zero error at higher loads in-
dicates that initial boundary condition imperfections are
overcome through the progressive stiffening effect of in-
creased load application.

VII.3.1. Inference

From the above tables, it is observed that the deflec-
tion at point A due to a load applied at point B is ap-
proximately equal to the deflection at point B due to the
same load applied at point A. This validates Maxwell’s
Reciprocity Theorem within experimental limits.

FIG. 2: Deflection of Simply Supported Beam

FIG. 3: Deflection of Cantilever

FIG. 4: Def. of Simply Supported Beam @100g

FIG. 5: Def. in Cantilever Beam @100g
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FIG. 6: Def. in cantiliver beam for 100g load with head
angle 0 (unsymmetric bending experiment)

VIII. UNCERTAINTY QUANTIFICATION AND
ERROR ASSESSMENT

To assess the reliability and accuracy of the experi-
mental results obtained from the beam deflection experi-
ments, a systematic error analysis is performed. The un-
certainties arise primarily from deflection measurements,
load application, and assumptions inherent in beam the-
ory.

C.1 Analytical Framework for Measurement
Uncertainty

The primary source of experimental variability in the
beam deflection studies originates from the precision lim-
itations of the dial gauge employed to quantify beam dis-
placement under progressively applied loads. To char-
acterize the relationship between deflection δ and load
magnitude P across the experimental range (P = 0 to
500 g), a least-squares fitting procedure is utilized.

For an experimental dataset comprising n observa-
tions, the standard deviation associated with the slope
parameter m (defined as m = dδ/dP ) is expressed as:

SEm =

√ ∑
(yi − ŷi)2

(n− 2)
∑

(xi − x̄)2
(1)

where:

• yi denotes experimentally acquired deflection mea-
surements,

• ŷi indicates the predicted deflection from the linear
regression model,

• xi represents the magnitude of applied load,

• x̄ signifies the arithmetic mean of the applied load
values.

Since theoretical deflection formulations for cantilever,
simply supported, and fixed-end beams incorporate the

flexural stiffness parameter EI, uncertainties inherent in
deflection measurements directly propagate to the deter-
mination of effective flexural rigidity.
The uncertainty component pertaining to the second

moment of inertia I is quantified through the quadrature
summation method, treating dimensional measurement
uncertainties as independent variables:

∆I =

√(
∂I

∂b
∆b

)2

+

(
∂I

∂t
∆t

)2

(2)

For a rectangular beam cross-section,

I =
bt3

12
(3)

the corresponding partial derivatives are:

∂I

∂b
=

t3

12
,

∂I

∂t
=

bt2

4
(4)

Combining these expressions yields the propagated un-
certainty in the second moment of area:

∆I =

√(
t3

12
∆b

)2

+

(
bt2

4
∆t

)2

(5)

C.2 Identification and Classification of Experimental
Deviations

Notwithstanding stringent adherence to experimental
protocol, numerous systematic and random contributors
generate discrepancies between observed measurements
and predicted theoretical values:

• Support Condition Deviation: Laboratory im-
plementations approximate idealized simply sup-
ported, cantilever, and fully fixed configurations.
Practical constraints such as fixture compliance,
localized deformation at support points, and par-
tial constraint effects diminish the effective rigidity
compared to theoretical models.

• Instrument Precision Limitations: Dial
gauges exhibit inherent measurement resolution
constraints. Incomplete zeroing procedures and
calibration drift introduce systematic biases into
successive deflection measurements.

• Distributed Load Effects: Applied loads, whilst
conceptually modeled as concentrated point ac-
tions, exhibit finite contact dimensions and poten-
tial off-center positioning relative to the theoretical
load axis.
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• Material Property Variability: The analyti-
cal model assumes homogeneous material charac-
teristics with constant Young’s modulus. Manu-
facturing tolerances, compositional heterogeneity,
and residual stress distributions cause actual elastic
properties to deviate from nominal specifications.

• Geometric Nonlinearity Inception: Classical
beam theory presupposes infinitesimal displace-
ments and linear elastic material response. Higher
load magnitudes may introduce subtle geometric
effects, particularly in slender cantilever configura-
tions, that violate these foundational assumptions.

• Environmental and Observational Perturba-
tions: Transient mechanical disturbances, ther-
mal fluctuations in ambient conditions, and paral-
lax/reading errors during dial indicator observation
contribute additional measurement scatter.

C.3 Experimental Validity and Error Envelope

Whilst numerous uncertainty mechanisms operate con-
currently, the experimental observations demonstrate
close adherence to theoretical projections. Residual de-
viations fall within the acceptable tolerance band an-
ticipated for tabletop-scale structural mechanics inves-

tigations, thereby affirming the applicability of clas-
sical Euler-Bernoulli formulations and reciprocal load-
deflection relationships within the measured uncertainty
bounds.

IX. FINAL OBSERVATIONS AND SUMMARY

The experimental investigation of cantilever and sim-
ply supported beam configurations successfully demon-
strated the validity of foundational Euler-Bernoulli beam
theory governing structural deformation. Proportional
correspondence between applied loading and resulting
deflection was consistently observed across all tested
materials, with material stiffness effects clearly man-
ifested—steel specimens exhibited minimal deflection
whilst aluminium exhibited pronounced displacement un-
der identical loading conditions. Comparative analysis
of analytical predictions, numerical finite-element results,
and laboratory measurements revealed substantial agree-
ment, with minor divergences attributable to practical
factors including boundary condition imperfections and
material inhomogeneity. The integration of experimen-
tal validation, computational modeling, and theoretical
analysis establishes a comprehensive framework for un-
derstanding and predicting structural behavior, thereby
reinforcing the foundational principles of mechanics of
materials and structural analysis for engineering applica-
tions.
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