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 Andrew Choi
 131 Shawnee Place Southwest

 Calgary, Alberta, Canada T2Y 1X1
 andre w@sixthhappiness.ca

 Jazz Harmonic Analysis

 as Optimal Tonality

 Segmentation

 When asked to improvise over the chord changes
 of a tune, jazz musicians, either by an intuitive
 or formal process, perform an analysis to obtain a
 harmonic road map that guides them through the
 possibilities of what notes and scales to play. The
 purpose of this harmonic analysis is to discover
 and understand underlying structures in the chord
 changes. A notation often used in jazz theory texts
 (e.g., Nettles. and Graf 1997; Jaffe 2009) to represent
 this harmonic structure identifies a segmentation
 of the chord changes, the key center (or tonality) of
 each segment, and the harmonic function of each
 chord with respect to its key center and other chords.
 Performing such an analysis is a fundamental step
 if jazz improvisation is to be simulated by software.
 It is also an interesting and important problem to
 be considered on its own for the implementation
 of jazz compositional and teaching tools. This
 article presents a formulation of and an algorithm
 for the harmonic analysis of jazz chord sequences.
 Some familiarity with jazz harmony or traditional
 harmony is assumed.

 Here is an example of the intended kind of
 analysis. Consider the chord changes for Miles
 Davis's Solar in Figure 1 .

 These chord changes will be the input given to
 the harmonic analysis algorithm. The output of the
 algorithm is an annotated chord chart, as shown in
 Figure 2.

 Key centers are shown below the bars: The key
 center of bars 1 and 2 is С minor, that of bars 3-6
 is F major, that of bars 7-9 is Eb major, and so on.
 Arrows and brackets represent dominant resolutions
 and related minor seventh chords (i.e., the related
 IIm7s), respectively (Nettles and Graf 1997). (These
 will be explained further in the section " Structural
 Analysis.") Roman numeral chord symbols above
 the chords indicate their harmonic functions with

 respect to their key centers. For example, the Dm7b5
 and G7b9 chords in bar 12 function as IIm7b5 and V7

 chords, respectively, resolving to the root of the key
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 center С minor. Once this analysis is performed, the
 information it provides can be used by a musician
 to determine what notes to play over the chord
 changes. This is the subject of numerous jazz theory
 texts and method books (e.g., Levine 1995; Pass
 1996).

 This representation of the result of harmonic
 analysis has sound theoretical basis and is well
 understood by jazz musicians. It facilitates direct
 comparison to analyses performed manually, and
 allows analysis algorithms to be evaluated objec-
 tively and compared with one another, since corpora
 of analyses of jazz standards are available in the
 literature (Mehegan 1959, 1962, 1964, 1965; Coker
 1987).

 The main innovation of the harmonic analysis
 algorithm presented in this article results from
 the observation that chord functions and harmonic

 structures (such as dominant resolutions and re-
 lated IIm7s) are completely determined by a given
 segmentation and choice of key centers. Harmonic
 analysis can therefore be formulated and solved
 algorithmically as a tonality segmentation problem.
 This formulation and a solution for it in the form of

 a dynamic programming algorithm are the subject
 of this article.

 Related Work

 Previous studies related to the subject of this
 article can be categorized into the following areas:
 grammar-based and rule-based harmonic analysis
 of jazz chord sequences, harmonic analysis of tonal
 music, jazz improvisation systems, and jazz theory.

 Grammar-Based and Rule-Based Harmonic

 Analysis of Jazz Chord Sequences

 Formal grammar has been used in the study of jazz
 chord sequences for some time. Steedman (1984)
 proposes a context-sensitive grammar as a generative
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 Figure 1. Chord changes
 for Solar.

 Figure 2. A harmonic
 analysis of Solar.

 Figure 1.

 Figure 2.

 model of variations of twelve-bar blues changes by
 chord substitution. The use of formal grammar for
 harmonic analysis, however, is problematic because
 no grammar that encompasses all possible chord
 changes will likely be found. It is also unclear
 how modulations can be described by grammar
 rules because " there seem to be no constraints on
 modulation: a theme can modulate to any new key"
 (Johnson-Laird 2002, p. 429).

 Pachet (1991) proposes a production rule system
 for harmonic analysis of jazz chord sequences. A
 rule-based system has the same weakness as a
 grammar-based system in that it cannot derive a
 suitable analysis when its set of rules does not
 include those required to analyze a given tune. For
 instance, the system is used to determine whether
 the chord changes of Solar are in the form of a blues.
 Lacking a rule for the general form of these changes,
 it "produces an analysis which is not what a human
 would do" (Pachet 2000). Mouton and Pachet (1995)
 suggest that a symbolic, rule-based method can

 benefit from a softer decision model by integrating
 numerical techniques, but offer no concrete proposal
 as to how this can be applied to harmonic analysis.
 The algorithm presented in this article incorporates
 symbolic knowledge in jazz theory and treats
 tonality segmentation as an optimization problem,
 and not one of "parsing" the chord sequences. The
 sample analysis of Solar generated by this algorithm
 (see Figure 2) demonstrates that a chord sequence
 can indeed be analyzed fully with such a technique.
 Therefore, with respect to harmonic analysis in the
 sense taught by jazz theory texts, it is unnecessary
 to determine whether a tune such as Solar is a
 blues, although it is crucial to find a good tonality
 segmentation for it.

 Scholz, Dantas, and Ramalho (2005) extend
 Pacheťs method by additional processing on gaps:
 segments of the chord sequence for which no
 pattern rules apply. After patterns are identified,
 gaps are merged with neighboring segments when
 certain conditions are met. Both their and Pacheťs
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 methods determine tonality segmentation for a
 chord sequence by the breaks among adjacent
 patterns detected by their sets of rules. If tonality
 segmentation is viewed as an optimization problem,
 such methods represent greedy algorithms (Corman,
 Leiserson, and Rives t 2009) in the sense that they
 make locally optimal choices in hopes that these
 will lead to globally optimal segmentations. The
 tonality segmentation algorithm in this article
 explicitly models the conditions under which
 modulations may occur and solves the optimization
 problem directly, using dynamic programming. In
 the formulation given herein, the quality of the
 tonality segmentation completely determines that
 of a harmonic analysis.

 Harmonic Analysis of Tonal Music

 Much work has also been done in harmonic analysis
 of tonal music, where the objective is to determine
 the harmonic structure in a sequence of musical
 notes. Algorithms proposed for this type of analysis
 make decisions based on numerical as well as

 symbolic information. Numerical algorithms for
 harmonic analysis typically introduce cost and
 distance functions and formulate the analysis
 problems as optimization problems. Thus, the
 algorithm of this article has more in common with
 them than rule- and grammar-based algorithms
 for chord sequences. Temperley and Sleator (1999)
 propose an analysis algorithm based on well-
 formedness rules and preference rules, adapted
 from A Generative Theory of Tonal Music (Lerdahl
 and Jackendoff 1983). The well-formedness rules
 define a solution space while the preference rules
 define a scoring system for the solutions. Their
 harmonic analysis problem is then formulated as an
 optimization problem - one of finding the shortest
 path in a directed graph, which is solved using
 dynamic programming.

 Pardo and Birmingham (2002) extend Temperley
 and Sleatoťs method by also taking chord qualities
 of segments into consideration. They present results
 of experiments that evaluate the performance of
 their algorithm and consider heuristic versions, as
 well as an optimal version, of the search algorithm.

 Illescas, Rizo, and Iñesta (2007) show how chord
 functions and cadences can be incorporated into
 preference rules. Stronger cadences are given higher
 scores, causing analyses that contain them to be
 preferred. Their technique shows how relationships
 among consecutive chords and their functions
 can be reflected in the preference rules. Their
 harmonic analysis problem is then also formulated
 as a shortest path problem and solved by dynamic
 programming.

 Jazz Improvisation Systems

 Numerous research papers and theses have been
 written about computer-music systems that gen-
 erate jazz improvisations in various forms (e.g.,
 Ramalho, Rolland, Ganascia 1999; Klein 2005).
 However, in these studies the problem of harmonic
 analysis only receives limited attention, and tech-
 niques are primarily borrowed from already- existing
 efforts. Interactive music systems for jazz improvisa-
 tion apply machine learning techniques to generate
 improvisation from training data input by users
 (Pachet 2003; Thorn 2003). Without a harmonic
 analysis component, these systems can only play
 tunes on which they have been trained, and can only
 apply or adapt learned lines. Keller and colleagues
 (2006) design and implement a GUI learning tool
 that allows its user to " compose an improvisation"
 by choosing lines to play against each chord (or
 group of chords) in a chart from a library. It also
 does not perform harmonic analysis and leaves the
 decision of which scales to use to its users. All of

 these systems will benefit from a more complete
 solution for the problem of harmonic analysis of
 chord sequences, such as the one presented in this
 article.

 Jazz Theory

 The notation for representing harmonic analysis
 used in the introduction has been taught at least as
 far back as the 1980s at the Berklee College of Music
 (Nettles and Ulanowsky 1987) and elsewhere (Jaffe
 1983). Not all jazz musicians and teachers agree on
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 Figure 3. Dominant
 resolution and deceptive
 resolution.

 the importance of formal harmonic analysis, and
 there is, of course, an immense body of knowledge
 on different approaches to jazz improvisation. Most
 will agree, however, that the study of harmonic
 analysis is necessary for understanding how and
 why jazz harmony works. It is also essential for
 computer simulation of jazz improvisation with
 explainable and reproducible results.

 Jazz theory texts generally describe elements
 of harmonic analysis by example and define them
 informally. Specifically, there is no concrete model
 for modulations, nor is there a systematic procedure
 for constructing an analysis from a given set of
 chord changes. A contribution of this article is the
 formalization of these concepts and descriptions
 into a mathematical model that can be operated on
 by computer.

 Structural Analysis

 The harmonic analysis algorithm operates in two
 steps: a structural analysis step which converts
 a chord sequence into a list of analysis elements
 (defined subsequently) and a tonality segmentation
 step which partitions this list into segments of
 different key centers.

 In this section the structural analysis algorithm
 and the data representation for the resulting har-
 monic structure are described. This description
 begins with a review of the following elements
 of jazz theory: dominant resolutions, harmonic
 rhythm, substitute dominants, related IIm7s, ex-
 tended dominants, turnarounds, and interpolated
 dominants (Nettles and Graf 1997; Jaffe 2009).

 Review of Jazz Harmony

 The primary dominant is the V7 chord of a given
 key. In a major key it is expected to resolve to

 the IMaj7 chord. (Four-note diatonic chords are
 prevalent in jazz-related contexts, so in a major key
 the I chord is usually IMaj7, and in a minor key
 the Im chord is usually Im 7 or ImMaj7. The 16 and
 Im6 chords can also be used as the I and Im chords,
 respectively.) For example, in F major, the primary
 dominant is C7, which resolves to FMaj7. In a major
 key, the secondary dominants are the VI7, VII7,
 17, 117, and III7 chords, which are also denoted by
 V7/II, V7/III, V7/IV, V7/V, and V7/VI, respectively.
 They are expected to resolve to the diatonic chords
 IIm7, Him 7, IVMaj7, V7, and Vim 7, respectively. In F
 major, the secondary dominants are D7 (resolves to
 Gm7), E7 (resolves to Am7), F7 (resolves to BbMaj7),
 G7 (resolves to C7), and A7 (resolves to Dm7).

 A primary or secondary dominant resolving to
 the expected diatonic chord a perfect fifth below
 creates a dominant resolution, which is annotated
 in a harmonic analysis by a solid arrow (bars 2 and 3
 in Figure 3).

 A dominant chord that does not resolve to the

 expected diatonic chord often represents a deceptive
 resolution. A deceptive resolution is not represented
 by an arrow in a harmonic analysis, but by a
 parenthesized roman numeral chord (bars 1 and 4
 in Figure 3). Note that deceptive resolutions are
 difficult to represent and analyze using grammar
 rules.

 For simplicity, tunes to be analyzed are assumed
 to be composed of sections whose lengths in bars
 are multiples of four, with four beats to a bar. The
 metrical structure (Lerdahl and Jackendoff 1983)
 of every four bars of a chord sequence is given by
 the grid in Figure 4. The majority of jazz standards
 satisfy this assumption. For tunes that do not, other
 means of deducing the metrical structure must be
 used, which will not be covered here.

 Stronger beats are ones with higher numbers. Har-
 monic rhythm is the pattern of accents created by
 the chord changes. Certain harmonic elements are
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 Figure 4. Four-bar metrical
 structure.

 Figure 5. Substitute
 dominant resolutions and
 related lìmi s.

 Figure 4.

 Figure 5.

 identified by interaction between harmonic rhythm
 and metrical structure. A dominant resolution is

 heard only when a dominant chord on a weaker beat
 resolves to its target chord on a stronger beat. In
 Figure 3, the dominant chords С 7 and A 7 occur on
 weaker beats compared to the FMaj7 and BbMaj7
 chords into which they resolve.

 The tritone substitution for a dominant chord

 is the dominant chord whose root is a tflV interval
 below (or equivalently, a bV interval above) the
 first chord's root. These substitute dominants can

 be used in place of the corresponding primary
 and secondary dominant chords. In a major key, the
 substitute dominants are the Ы17, bIII7, bV7, and bVI7
 chords, which are also denoted by subV7, subV7/II,
 subV7/IV, and subV7/V, respectively. The chords IV7
 (subV7/III) and bVII7 (subV7/VI) will only function
 as substitute dominants in rare situations (Nettles
 and Graf 1997). Substitute dominant resolutions are
 annotated in a harmonic analysis by dotted arrows
 (Gb7 resolving to FMaj7 in Figure 5).

 The related lìmi of a dominant chord is the
 minor seventh chord (or a minor seventh flatted
 fifth chord for minor tonalities) whose root is a
 perfect fourth below the dominant chord's root.
 Any dominant chord may be preceded by its related
 IIm7, or its tritone substitution's related IIm7. In
 a harmonic analysis, this is annotated by a solid
 bracket (or dotted bracket, respectively) under the
 two chords (see Figure 5). Harmonic rhythm must
 also be taken into consideration in the detection of
 related IIm7s: the related IIm7 and the dominant
 chord must be on a stronger beat and a weaker beat,
 respectively. (This applies regardless of whether a
 tritone substitution is used for the dominant chord
 and whether the IIm7 chord is the related IIm7 of
 the dominant chord or its tritone substitution.)

 An extended dominant (also called sequential
 dominant and substitute sequential dominant)
 is a series of dominant chords each resolving
 (deceptively) to the next one. It is represented by a
 series of arrows in a harmonic analysis (bars 1-4 in
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 Figure 6. Examples of
 extended dominants.

 Figure 6). Only the first and last dominant chords are
 labeled with roman numeral chords. An extended

 dominant may also be composed of a combination
 of dominant and substitute dominant resolutions

 (bars 5-8 in Figure 6). It may also contain related
 IIm7s (bars 9-12 in Figure 6).

 A turnaround is an idiomatic progression of
 (typically) four chords occurring at the end of a
 section, replacing an extended duration of a tonic
 chord. Many turnarounds cannot be analyzed by
 the usual rules. Because their chord progressions
 are so distinctive, however, the structural analysis
 algorithm can recognize them by looking up an
 internal library of turnarounds. An example of a
 turnaround in F major is the two bars | Am7 Abm7
 | Gm7 Gb7 |. The library of turnarounds used in the
 current implementation of the structural analysis
 algorithm contains 13 turnarounds extracted from
 the collections of tunes in Appendix D of Coker
 (1987).

 An interpolated dominant is a substitute domi-
 nant chord that is inserted into a larger structure. It
 always resolves to the chord that follows it, whose
 root is a bll interval below its own root. That target
 chord must be part of a larger structure. It may be
 the target of a dominant resolution (the FMaj7 chord
 in bar 3 in Figure 7). The interpolated dominant is
 depicted with a straight dotted arrow connecting
 it to its target. It may be the dominant chord of

 a related IIm7-dominant chord pair (the C7 chord
 in bar 6 in Figure 7). Or, it may be the second or
 subsequent dominant chord in, or the final target
 of, an extended dominant (the chords G7, C7, and
 FMaj7 in bars 11, 12, and 1 in Figure 7).

 Structural Analysis Algorithm

 The structural analysis algorithm and the data
 structure it generates are now described. Consider
 the variation of the blues progression in Figure 8.

 Figure 9 shows its harmonic analysis. Note that
 the entire chord sequence is composed of a single
 segment with a F major key center.

 The structural information that needs to be
 extracted from the chord sequence to generate the
 harmonic analysis above is represented by boxes in
 Figure 10.

 Each chord, turnaround, interpolated dominant,
 related IIm7, or extended dominant is represented by
 an analysis element (AE). (AEs are representations
 of basic elements of jazz theory used in harmonic
 analysis,- contrast them with "analysis objects" in
 Pachet [2000] which represent such elements as
 well as high-level concepts such as "shapes" and
 song forms.) The output of the structural analysis
 algorithm is simply a list of AEs, that is, an AE
 list. Each chord is represented by a chord AE. A
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 Figure 7. Examples of
 interpolated dominants.

 Figure 8. A blues
 progression.

 Figure 7.

 Figure 8.

 turnaround AE contains an AE list, the elements of
 which are chord AEs. An interpolated dominant AE
 contains AEs for the substitute dominant chord and

 its target chord. A related lìmi AE contains AEs for
 the IIm7 chord and the "41") the latter may be the
 dominant chord to which the IIm7 chord is related

 or that dominant chord's tritone substitution, or
 an interpolated dominant whose target chord is a
 suitable dominant chord. An extended dominant

 AE contains an AE list; each of its elements may
 be a chord AE that represents a dominant chord, an
 interpolated dominant AE, or a related IIm7 AE.

 Note that dominant resolutions, substitute
 dominant resolutions, and deceptive resolutions
 are not represented explicitly in the data structure.
 AEs that represent dominant chords, related IIm7s,
 extended dominants, and turnarounds ending in
 dominant chords resolve (normally or deceptively)
 to the AEs that follow them. For example, the
 AEs corresponding to bars 2 (Em7b5 A7), 3 (Dm7
 G7), and 8 (Abm7 Db7) in Figure 9 all function as

 dominants that resolve to the AEs that follow them,
 respectively. The AE corresponding to bar 4 (Cm7
 Cb7) is a substitute dominant that resolves to the
 BbMaj7 chord in bar 5. The related IIm7 (which
 contains an interpolated dominant) in bars 9 and 10
 (Gm7 Db7 C7) resolves deceptively to Am7, the first
 chord of the turnaround in bars 1 1 and 12.

 Here is the structural analysis algorithm.

 Input: an AE list of input chords.
 Output: an AE list representing the result of the
 analysis.
 1. Scan the input AE list for turnarounds;
 for each one found, replace the chord AEs in it
 with a turnaround AE.

 2. Scan the AE list for related IIm7s ( * ); for
 each one found, replace the two AEs forming
 the related IIm7 with a related IIm7 AE.
 3. Scan the AE list for extended dominants

 ( * ); for each one found, replace the AEs in it
 with an extended dominant AE.
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 Figure 9. A harmonie
 analysis of the blues
 progression.

 Figure 10. Structural
 information in the blues
 progression.

 Figure 9.

 Figure 10.

 4. Scan the AE list for interpolated domi-
 nants at its top level; for each one found, replace
 the two AEs in it with an interpolated dominant
 AE.

 ( * ) When looking for a dominant chord in
 step 2 and 3, take into account that it may be
 preceded by an interpolated dominant chord
 and construct an interpolated.

 The four passes of the algorithm detect
 turnarounds, related IIm7s, extended dominants,
 and top-level interpolated dominants, respectively.
 Note that the algorithm cannot scan for interpolated
 dominants all in one step because they can only be

 identified when they are part of a larger structure.
 Clearly the running time of the structure analysis
 algorithm is a linear function of the number of input
 chords.

 Note also that the structural analysis algorithm
 does not detect dominant chords in blues pro-
 gressions and special situations where they do
 not create a dominant or deceptive resolution.
 These will be handled by the tonality segmentation
 algorithm.

 The input to the structural analysis algorithm is
 a list of chord AEs constructed from the input chord
 sequence. The duration of each chord, measured in
 beats, is also stored in the chord AE. The following
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 list represents the chord sequence of the sample
 blues progression.

 [ (FMaj7, 4); (Em7b5, 2); (A7, 2); (Dm7, 2); (G7, 2);

 (Cm7, 2); (Cb7, 2); (BbMaj7, 4); (Bbm7, 4);

 (Am7, 4); (Abm7, 2); (Db7, 2); (Gm7, 2); (Db7, 2);

 (C7, 4); (Am7, 2); (Abm7, 2); (Gm7, 2); (Gb7, 2);

 (FMaj7, 4)]

 From this representation the starting beat of each
 chord can be deduced, which enables us to check
 harmonic rhythm requirements when locating
 related IIm7s. Here is the output generated for this
 input by the structural analysis algorithm.

 [ FMaj7;
 RelatedIIm7 (Em7b5, A7);
 RelatedIIm7 (Dm7, G7);
 RelatedIIm7 (Cm7, Cb7);
 BbMaj7;
 Bbm7;
 Am7;
 ExtendedDominant

 [ RelatedIIm7(Abm7/Db7);
 RelatedIIm7

 ( Gm7,
 InterpolatedDominant (Db7, C7))];

 Turnaround [Am7; Abm7; Gm7; Gb7];
 FMaj7]

 Chord AEs are listed by just the names of the
 chords. In actual implementation each chord's
 starting beat and duration are stored with the
 chord to make it easy to check harmonic rhythm
 requirements for dominant resolutions and generate
 the harmonic analysis output.

 An important observation is that the structural
 analysis algorithm does not require prior knowledge
 of the key center to work. Interpolated dominants,
 related IIm7s, and extended dominants can be
 identified without knowing the underlying tonality.
 Also in practice, chord progressions in turnarounds
 are so distinctive that they can be identified by
 deducing the key centers from the matched chords.
 For example the turnaround library contains the
 pattern "IIIm7 blllm7 IIm7 Ы17", which will match

 "Am7 Abm7 Gm7 Gb7" in the chord sequence.
 The presence of the turnaround "Am7 Abm7 Gm7
 Gb7" also implies that the current key center
 is either F major or F minor. This information
 will be used to define the cost of a turnaround

 in the subsequent "Cost Function for Segments''
 section.

 Because of this, the structural analysis algorithm
 here can also be applied as it is to chord sequences
 containing tonality changes. The output generated
 by the structural analysis algorithm for the tune
 Solar, for example, whose analysis is given in Figure
 2, is as follows.

 [ Cm6;
 RelatedIIm7 (Gm7, C7);
 FMaj7;
 RelatedIIm7 (Fm7, Bb7);
 EbMaj7;
 RelatedIIm7 (Ebm7, Ab7);
 DbMaj7;
 RelatedIIm7 (Dm7b5, G7);
 Cm6]

 The key centers are needed to generate the roman
 numeral chords in the analysis output. However,
 this operation is only performed when the tonality
 segmentation algorithm is complete, at which time
 the key centers are known.

 Tonality Segmentation

 Conceptually, the tonality segmentation algorithm
 is quite simple. It divides the AE list generated by
 the structural analysis algorithm into segments and
 assigns a key center to each segment. Its goal is to
 divide the AE list at positions where modulations
 occur in the represented chord sequence, and to
 assign key centers to the segments that "best
 explain" each chord's harmonic function with
 respect to the key center of its segment (to be
 quantified by a cost function below). These two
 aspects of the algorithm will be discussed in
 "Validity Conditions for Segments" and "Cost
 Function for Segments," respectively. First, the use
 of dynamic programming for tonality segmentation
 is described.
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 A Dynamic Programming Algorithm for
 Tonality Segmentation

 Let ûo/ üb • • - / ûn-i be the AE list output of the
 structural analysis algorithm. Each a¡, 0 < i < n, is a
 top-level AE on the AE list. For example, for the AE
 list for Solar, n = 9, ao is the chord AE for Cm6, a' is
 the related IIm7 AE for Gm7 and С 7, a<i is the chord
 AE for FMaj7, and so on.

 A segmentation of the AE list into m segments is
 represented by indexes po, p', . . . , pm such that 0 =
 Po < Pi < • • • < Pm = n. The i-th segment contains
 the AEs aPl, aPi+h . . . , %+1_i, for 0 < i < m The
 objective of the algorithm is to find a segmentation
 with minimal cost, where the cost of a segmentation
 is defined as follows. Let df ; be the cost (described
 later) of assigning the key center к to the segment
 Q-i, tfi+b • • • / я // where 0 < i < j < n, к е К, and К is

 the set of all possible major and minor keys. Let d*;
 be the minimal cost of df ;- among all keys, i.e.,

 d*7 = mindf7

 Then the cost of the segmentation po, p', . . . , pm
 is given by

 Mlm-ll + y^d! D ,

 where M is a constant that represents the cost
 of a modulation. The choice of its value will be

 discussed subsequently.
 A minimal-cost segmentation can be found using

 dynamic programming. Let Cj be the minimal cost
 for segmenting ao, a', . . . , щ, for 0 < i < п. Then,

 Cl ' min (dg|i; minJ/=1 (c,-_i + d}4 + Щ if i > 0

 That is, apart from the initial condition, the minimal
 cost of analyzing the first i AEs is given by either
 the cost of analyzing all of them in one key center,
 or the minimum of the sum of the minimal cost

 of analyzing the first / AEs, that of analyzing
 the remaining i - j AEs in one key center, and
 the cost of a modulation, over all possible values
 of ; - whichever is smaller. Given the values of
 ¿Üfp for 0 < i < / < n and keK, the values of

 d*j f or 0 < i < j < n can be determined in n1 'K'
 operations. Because 'K' is constant (24, if 12 major
 keys and 12 minor keys are considered), this step
 takes O[n2) time. The values of c¿ f or 0 < i < n can
 also be computed in О(л2) time in the order of
 increasing index i. A standard technique in dynamic
 programming is used to record the index / that
 results in the minimal cost in each step so that the
 minimal segmentation can be recovered after Cn-'
 has been computed.

 This formulation of tonality segmentation makes
 the assumptions that changes in tonality do not
 occur within the AEs and that the tonality of each
 segment is independent of those of past and future
 segments. In practice these assumptions do not
 hinder the discovery of the "correct" segmentation.
 The structural analysis algorithm can thus be viewed
 as a normalization step performed on the input
 chord sequences so that the tonality segmentation
 algorithm can process them more easily.

 Cost Function for Segments

 To complete the description of the tonality seg-
 mentation algorithm, of ;, the cost for choosing k
 as the key center for the segment ait ai+',... , я,
 needs to be defined. For example, one would expect

 jj'F major" tQ ^ауе а 8тац value for the AE list in the
 given example, because the segment a', a% (Gm7 C7,
 FMaj7) corresponds to the most common cadence in
 F major. Let

 s. = № ifs£/istme
 ' ; = I oo otherwise

 for all 0 < i < / < n and keK. The quantities s*;.
 and t£; play the roles that well-formedness rules and
 preference rules do in Temperley and Sleator (1999),
 respectively. That is, s£; defines a space of all valid
 solutions, and t£; assigns costs to these solutions
 to reflect their respective quality; the optimization
 problem is then one of finding a valid solution with
 minimal cost. The cost measure i£;- is defined to
 be the sum of costs associated with the harmonic
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 Table 1. Chord Categories and Costs

 Category Major Key Chords Minor Key Chords Cost

 Root IMaj7 Im7 -6
 Diatonic excluding root IIm7, Him 7, IVMaj7, IIm7, bIIIMaj7, IVm7,
 and primary dominant VIm7, VIIm7b5 Vm7, bVIMaj7, bVII7 -5
 Primary dominant V7 V7 -4
 Substitute primary dominant bII7 bII7 -3
 Secondary dominant VI7, VIU, U, 117, III7 VU, bVII7, 17, 117, bIII7, IV7 -2
 Substitute secondary dominant bIII7, bV7, bVI7, IV7, bVII7 bII7, 117, bV7, bVI7, VII7 -1
 Blues IV7 - 0

 Modal interchange Im7, IIm7b5, bIIIMaj7, IVm7, Vm7, bVIMaj7, bVII7 - 0
 Diminished Any diminished chord Any diminished chord 0
 Unknown Chords not listed above Chords not listed above oo

 functions of each of the AEs щ, щ+', . . . , ¿z;- with
 respect to the key center к according to Table 1 .
 For example, a' in the given example, a related

 IIm7 with chords Gm7 and C7, functions as a
 primary dominant in F major (as explained subse-
 quently), and contributes a cost of -4 to segments
 that contain it. The cost assigned to each category
 indicates how much the presence of an AE in that
 category supports the choice of the key center. That
 is, the presence of a root is better evidence in support
 of the key center than a "diatonic" chord (as defined
 in Table 1, which excludes the root and the primary
 dominant), which is in turn better evidence than
 a primary dominant, and so on. Note that minor
 keys do not have blues or modal interchange chords,
 indicated by empty entries in Table 1 .
 These cost values are chosen by trial and error

 through experiments conducted on the collection of
 tunes in Appendix D of Coker (1987). They follow
 our intuition on the degrees to which chords in these
 different categories reflect the presence of a given
 key center. The tonality segmentation algorithm
 appears to be robust with respect to variations in the
 cost values as long as relative rankings among the
 categories are preserved.
 To determine the category of a chord AE, its

 roman numeral chord with respect to к is computed
 and looked up in the appropriate column of Table 1 .
 The category of an interpolated dominant AE is that
 of its target chord. The category of a related IIm7 AE
 is that of its "V7" AE. The category of an extended
 dominant AE is that of its last AE. The cost of a

 turnaround depends on the key centers it implies,
 which are determined when it is detected by the
 structural analysis algorithm. Its cost is 0 if A is one
 of those key centers and oo otherwise. For example,
 the cost of the turnaround "Am7 Abm7 Gm7 Gb7"

 is 0 if A is F major or F minor, and oo otherwise.
 The values of i^ ., 0 < i < / < n, and к e К can be

 computed in O(n2) time:

 Í category cost of щ from table 1 if i = /
 и • = '
 ; 1 *n - 1 + ll i otherwise

 The cost of a modulation, M, is assigned a
 value larger than that of any segment. That is, let
 M > -$п_х for all A g K. Because of this, the tonality
 segmentation algorithm will always minimize the
 number of modulations (under the constraint of
 the validity conditions to be discussed) as well as
 find an assignment of key centers to the segments
 that correspond to the best analysis of harmonic
 functions of all the AEs.

 Validity Conditions for Segments

 To complete the definition of d^jf define sfj to be
 the validity of analyzing the segment щ, щ+', . . . , ¿z7
 in key center к It is defined as a logical conjunction
 of four conditions:
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 Figure 11. Bridge of tune
 31a.

 A valid segment is assumed to always contain a
 root AE of key center к Let r*;- be true if and only
 if the segment щ, ûj+i, . . . , ¿z,- contains a root AE in
 key A.

 Also, a valid segment is assumed not to end in
 a dominant chord. Let /Д be true if and only if ¿z;
 is not an AE of a category in DOM in key k, where
 DOM = {Primary dominant, Secondary dominant,
 Substitute primary dominant, Substitute secondary
 dominant}.

 Each AE in the segment must have a known
 harmonic function in key k. Let uf ; be true if and
 only if all of Щ, ¿Zi+i, . . . , aj have known categories in
 Table 1 with respect to key k.

 It is easy to verify that each of r*;-, /Д, and u£ ;.
 can be computed in О(л2) time for all 0 < i < / < n
 and A g K.

 Validity of a Segment Due to Subsegments

 The final condition e£; causes the validity of
 analyzing the segment aif ai+', . . . , я, in key к to be
 affected by whether subsegments embedded in it
 can be analyzed as modulations to keys related to k.
 In other words, e£; is true if and only if the segment
 aif tfi+i, . . . , dj contains no modulation to a related
 key that prevents it from being analyzed completely
 in key k. A key is related to key к if the former's
 tonic chord has one of the harmonic functions in
 к listed in Table 1 . A related key is specified by a
 roman numeral interval optionally followed by the
 letter 'm' (for minor keys). For example, the related
 keys bVI and Him of F major are Db major and A
 minor, respectively. Using this notation, the related

 keys of a major key are Ilm, Him, IV, Vim, Im, bill,
 IVm, Vm, and bVI and those of a minor key are Ilm,
 bill, IVm, Vm, and bVI.

 Modulations to keys unrelated to к are already
 detected by the use of u£;. For example, in the
 analysis of Solai in Figure 2, analysis of the segment
 containing the AEs a' (Gm7 C7), &i (FMaj7), and аз
 (Fm7 Bb7) in F major cannot extend into a* (EbMaj7)
 because EbMaj7 has no valid harmonic function in F

 major. Thus, the value of щ™^ох" is false. Note also
 that because as functions as a substitute secondary
 dominant in F major and as a primary dominant
 in Eb major, the cost assignments in Table 1 will
 associate it with the latter key center after the
 modulation from F major to Eb major is detected.

 As an example of a tune with a modulation
 to a related key, consider tune 31a in Appendix
 D of Coker (1987). This tune begins with an A
 section with a key center of Bb major, played twice.
 It then modulates to Eb major in the bridge, as
 shown in Figure 11. This is followed by a repeat of
 the A section (in Bb major). The bridge contains a
 turnaround "Eb6 Cm7 Fm7 Bbl3" that implies an
 Eb major tonality. Because this turnaround does not
 have a valid harmonic function in Bb major, the
 modulation to Eb major in the bridge is detected in
 the same way a modulation to an unrelated key is
 detected, as described above, using u£;-.

 Now consider tune 31b in Appendix D of Coker
 (1987). It begins with an A section in F major,
 played twice. It then modulates to Bb major in
 the bridge, shown in Figure 12. This is followed
 by a variation of the A section (also in F major).
 The bridge is composed of only two types of AEs,
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 Figure 12. Bridge of tune
 31b.

 chord AE Bb6 and related IIm7 AE Cm7 F7. Because
 these AEs have valid harmonic functions in F

 major, using only the mechanisms described so
 far, the bridge will also be analyzed in F major,
 leaving the modulation to Bb major undetected.
 The use of e£ ■ enables the tonality segmentation
 algorithm to detect modulations within segments
 even when these modulations do not contain AEs

 that distinguish them from the tonal centers of the
 enclosing segments.

 The design of e£; presents a challenge because
 if the condition is too selective, the algorithm will
 miss subsegments that are in fact modulations
 to related keys; if it is too indiscriminate, the
 algorithm will detect superfluous modulations.
 Therefore, e£;. is defined in such a way that allows
 experimentation and fine tuning. The chord charts
 with tonality segmentation in Appendix D of Coker
 (1987) are then used in experiments to determine its
 final definition, which is presented herein. A future
 extension to the tonality segmentation algorithm
 can include a statistical model for modulations and

 select parameters for defining e£; automatically
 using a set of training data.

 Let gïj[rk, sc, st, sp), for 0 < i < ; < n and ke К,
 be the validity of analyzing segment aif ai+', . . . , я;
 in the key к with respect to whether it contains
 subsegments that can be identified as modula-
 tions according to a criterion specified by the tuple
 [rk, sc, st, sp). That is, gfj[rk, sc, st, sp) is true if and
 only if no subsegment of a certain type (specified
 by [rk,sc,st,sp)) occurs within it, which would
 invalidate the analysis of the entire segment in к
 The first parameter rk is a related key of k. The

 precise definitions of sc, si, and sp will be given
 herein. Intuitively, the parameters sc and si provide
 a test for determining whether a subsegment has
 the characteristics of a modulation (e.g., being long
 enough, or containing AEs of the right categories).
 The parameter sp specifies the allowable positions
 of a subsegment in щ, щ+', . . . , a¿. The complete
 list of values for (rk, sc, st, sp) that the tonality seg-
 mentation algorithm considers is given in Table 2.
 Then e£; is simply the logical conjunction of the
 values of gfj[rk,sc,st,sp) over all these sets of
 values.

 Certain related keys such as IV and Vim are
 "more related" to the original major key than
 others. Subsegments in these related keys need to
 be more prominent before they are identified as
 modulations. Under certain conditions (see "type
 C," subsequently), these subsegments must be
 eight bars or longer to be identified as modulations.
 Subsegments in "less related" keys, such as bill
 and bVI, are identified as modulations more easily.
 For example, in a segment in the key of F major,
 a short two-bar subsegment of, say, an Eb7 chord
 followed by an AbMaj7 chord, is already identified
 as a modulation.

 According to how easily subsegments analyzed in
 them are identified as modulations, related keys are
 divided into three types as follows.

 Type A - bill and bVI of a major or minor key
 Type В - Im, Um, Ulm, IVm, and Vm of a major

 key; Um and Vm of a minor key
 Type С - IV, and Vim of a major key; IVm of a

 minor key

 Choi 61

This content downloaded from 
������������146.232.129.75 on Sat, 28 Aug 2021 16:21:55 UTC������������� 

All use subject to https://about.jstor.org/terms



 Table 2. List of AU Related Keys, Subsegment Categories, Subsegment Tests, and Subsegment
 Positions Considered by the Tonality Segmentation Algorithm

 For major key к
 Related Key (rk) Subsegment Categories(sc) Subsegment Test (st) Subsegment Position(sp) Type

 bill SCsimple Simple ANY A
 bVI scsimpie simple ANY A
 Im SCsimple Stsimple EP B
 Um SCsimpie Stsimple ЕР В
 Ulm SCsimple Stsimple ЕР В
 IVm scsimple sístole ЕР В
 Vm SCsimple SUimple ЕР В
 IV sciong sbong ANY C
 IV SCshort Stshort ЕР С
 Vim sclong stiong ANY C
 Vim scshŒt stshort ЕР С

 For minor key к
 Related Key (rk) Subsegment Categories(sc) Subsegment Test (st) Subsegment Position (sp) Type
 bill SCsimple Stsimple ANY A
 bVI SCsimple Stsimple ANY A
 Um SCsimple Stsimple ЕР В
 Vm SCsimple Stsimple ЕР В
 IVm sciong sbong ANY С
 IVm scshort stshort ЕР С

 These types have increasingly stringent require-
 ments for subsegments analyzed in their related
 keys to be identified as modulations. Each type
 has its own criterion (or criteria) for identifying
 modulations.

 A subsegment in a related key of type A is
 detected by setting the parameters se, st, and sp to

 sc = scsimpie = {Root, Primary dominant},

 st = simple = dui[h,l) > 8, and

 sp = ANY

 respectively, where dm(h,l) denotes the total du-
 ration (in number of quarter notes) of the AEs in
 the subsegment ah, аъ+', ...,O[. In other words, a
 passage in a related key of type A must be at least
 two bars long to be considered a modulation. The
 subsegment ah, &h+', • • • / Щ is identified as a modu-
 lation if, when analyzed in the related key rk, each
 AE in ah, cih+i, . . . , a' is of a category in sc, the test
 st evaluates to true, and (1) at least one AE of the

 subsegment is in the Root category and (2) the sub-
 segment does not end in an AE of a category in DOM.
 Conditions (1) and (2) are always added regardless
 of the values of rk, sc, st, and sp. For example, in
 the key of F major, the subsegment |Eb7|AbMaj7| is
 identified as a modulation in the related key bill. So
 are |AbMaj7|AbMaj7| and |F7|Bb7|Eb7|AbMaj7|, but
 not |Bmb7|Eb7| (violates condition [1]), |AbMaj7|Eb7|
 (violates condition [2]), or |Bbb7|AbMaj7| (category of
 Bbb7 not in sc).

 The value ANY for the parameter sp means that
 the subsegment ah, ah+i, -•• ,cli may appear anywhere
 within the segment in question, and therefore
 represents a null test.

 Related keys of type В are "more related" to the
 original key к than those of type A. Subsegments in
 them are identified as modulations when they are
 immediately preceded or followed by a modulation
 to yet another key center. They are not identified
 as modulations when they appear in the middle of a
 segment in key k, however. As an example of modu-
 lations to related keys of type B, consider the analysis
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 Figure 13. Bridge of
 Yardbird Suite.

 of the bridge of tune 73 [Yardbird Suite) in Appendix
 D of Coker (1987), shown in Figure 13. Its first three
 bars form a segment with a key center of E minor.
 Its last three bars (and the A section that follows,
 only the first bar of which is shown) form a segment
 with a key center of С major. Although bars 4 and 5
 can be analyzed in С major, they satisfy the criterion
 specified below (including being preceded by a seg-
 ment with another key center, E minor). They are
 therefore detected as a separate segment with a key
 center of D minor, a related key of С major of type B.
 Note also that if the Em6 chords in bars 1 and 3 (no
 harmonic function in С major) are changed to Em7
 chords (diatonic chords in С major), the entire bridge
 will be analyzed in С major because bars 4 and 5
 occur in the middle of a segment with a key center of
 С major.

 Modulations to related keys of type В are detected
 by setting the parameters sc, st, and sp to

 SC = SCsimple,

 St = StsimpU, and

 sp = EP

 The value oí EP for parameter sp specifies that
 the subsegment ah, dh+i, . . . , a' must appear at an
 endpoint of the segment ¿z¿, щ+', . . . , ¿z,. That is, an
 additional test is performed which evaluates to true
 if and only if h = i v 1 = /.

 Chords in the related keys of type С are most re-
 lated to к Two sets of criteria are needed to correctly
 handle the different ways in which modulations in
 these related keys may appear. Longer subsegments
 in these related keys are identified as modulations
 regardless of where they are in the original segment.

 Such subsegments will contain AEs belonging to
 more categories. The settings for sc, st, and sp to
 identify these modulations are

 sc = sciong = {Root, Diatonic} U DOM

 st = stiong = dur(h,l) > 32 л 4 -rdm [h, 1)

 > odur[h,l), and

 sp= ANY

 where rdur[h,l) and odur[h,l) denote the total
 durations (in number of quarter notes) of root AEs
 and other AEs in the subsegment ah, äh+i, • • • ; Q-h
 respectively. The modulation from F major in the
 A section to Bb major in the bridge in tune 31b
 in Appendix D of Coker (1987; see Figure 12) is
 detected by these parameter settings.

 Shorter subsegments in related keys of type С
 are also detected as modulations when they are
 immediately preceded or followed by a modulation
 to another key center. The corresponding settings
 for sc, st, and sp are

 sc = sCshon = {Root, Primary dominant},

 st = stshon = dur[h,l) > 8 л 2-rdur[h,l)

 > odur(h,l) a odm[h,l) > 0, and

 sp = EP

 As an example, tune 33 [Jeep er s Creepers) in
 Appendix D of Coker (1987) begins with two repeats
 of an A section in the key of Eb major, followed by the
 bridge shown in Figure 14, then followed by another
 time through the A section. Bar 5 and the first half of
 bar 6 of the bridge are analyzed in Bb major because
 BbMaj7 has no valid harmonic function in Eb major.
 The first four bars can be analyzed in Eb major as

 Choi 63

This content downloaded from 
������������146.232.129.75 on Sat, 28 Aug 2021 16:21:55 UTC������������� 

All use subject to https://about.jstor.org/terms



 Figure 14. Bridge of Jeepers
 Creepers.

 Figure 15. Chord changes
 for Solar represented by
 key centers and roman
 numeral chords.

 Figure 14.

 Figure 15.

 a continuation of the segment containing the A
 section. However, they are not, because they are
 detected by the settings for sc, st, and sp above and
 analyzed as a separate segment with a key center of
 Ab major.

 It can be shown that the computation of e£j for all
 0 < i < / < n and к € К requires O[n2) time. Given k,
 for each combination of rk, sc, st, and sp, categorize
 the AEs ao,a',..., an-' with respect to the related
 key rk. Identify all maximal spans in it for which:
 each AE is of a category in sc, st is true, at least
 one AE in the Root category is present, and the
 category of the last AE is not in DOM. Intuitively,
 a segment щ,щ+', .. . ,a.j can only be valid for
 sp = ANY if i and / are in the same maximal span
 or gap between maximal spans, since any proper
 subsegment it contains that overlaps a maximal
 span will invalidate it. (A proper subsegment of a
 segment is one that is [strictly] shorter than the
 segment.) Additionally, the segment щ, щ+', . . . , tf/
 can only be valid for sp = EP ií i and ; are in the
 same maximal span or gap between maximal spans,
 or each of them is in a gap between maximal spans.
 This ensures that no proper subsegment at its two
 endpoints overlaps a maximal span, which will
 invalidate it. Therefore let zq, z', . . . , zn_i be integer
 labels assigned to the AEs such that two AEs have

 the same odd (or even) label if and only if they belong
 to the same span (respectively, gaps between spans).
 Then it can be shown that

 glj(rk,sc,st,sp)

 iisp=ANY

 Zi-Zj v [zi mod 2=0 az; mod 2=0) if sp=EP

 This completes the description of the tonality seg-
 mentation algorithm. Note that the time complexity
 of the harmonic analysis algorithm is O[n2).

 Evaluation of the Tonality Segmentation Algorithm

 The performance of the tonality segmentation al-
 gorithm is evaluated using the entire collection of
 tunes in Appendix D of Coker (1987). These tunes
 contain a wide variety of types of modulations and
 compositional and harmonic devices and demon-
 strate the general applicability of the harmonic
 analysis algorithm. The chord changes of the tunes
 are given by key centers and roman numeral chords.
 For example, the chord changes for Solar (see Figure
 1) are represented as in Figure 15. The key centers
 below the roman numeral chords represent how a
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 Figure 16. Example of
 different segmentation due
 to handling of dominants.

 musician might perform tonality segmentation for
 the tune. They provide a benchmark against which
 the output of the tonality segmentation algorithm
 can be compared.

 This representation is converted into an ordinary
 chord chart (such as the one in Figure 1), and then
 used as input for the structural analysis algorithm
 and tonality segmentation algorithm. The resulting
 segmentation and original segmentation are then
 compared.

 Among the 78 tunes in that collection, 57 receive
 exactly the same segmentation by both Coker and
 the tonality segmentation algorithm. An additional
 13 (tunes 7, 12, 27, 28, 29, 33, 53, 63, 69, 70, 73,
 78, and 82) have identical sequences of key centers,
 but different assignment of dominant chords to
 consecutive segments. An example of this type of
 discrepancy is shown in Figure 16, which results
 from the requirement of the tonality segmentation
 algorithm to end segments with AEs that do not
 function as dominant chords. Dominant chords at

 the boundary of two segments often play dual roles
 in the two key centers and it is simpler and more
 consistent to associate them with the chords into

 which they resolve.
 Among the eight remaining tunes, in five (20, 23,

 36, 52, and 62) the tonality segmentation algorithm
 detects more segments than those given by Coker
 (1987). For example, the tonality segmentation
 algorithm determines that tune 23 (Charlie Parker's
 Blues for Alice) contains one bar in F major, four
 bars in Bb major, two bars in Ab major, and five bars
 in F major. Coker considers the entire tune to be in
 F major. Both analyses are in some sense "correct."

 The tonality segmentation algorithm omits some
 segments in the other three tunes (3, 25, and 54).
 These segments are too short or fail to satisfy the

 criteria (they do not contain a root AE of the key
 center, for example) to be detected by the algorithm.

 An OCaml (Leroy 2008) implementation of
 the structural analysis and tonality segmentation
 algorithms and test data can be downloaded from
 the Web page www.sixthhappiness.ca/ jazz-harmonic
 -analysis.

 Summary

 A new algorithm for harmonic analysis of jazz chord
 sequences has been described. It views harmonic
 analysis as a problem of segmenting the input chord
 sequences and determining the key centers of the
 segments. This representation is natural and com-
 monly used by jazz musicians. More importantly,
 it allows modulations in the chord sequences to
 be modeled explicitly. The harmonic analysis prob-
 lem can then be formulated mathematically and
 solved by dynamic programming as an optimization
 problem. Jazz theory knowledge is incorporated
 into the algorithm to specify and solve the tonality
 segmentation problem. Once the segments and
 key centers are determined, structural information
 can be recovered from straightforward detection of
 well-understood elements of jazz theory such as
 dominant resolutions, harmonic rhythm, substitute
 dominants, related IIm7s, extended dominants,
 turnarounds, and interpolated dominants. The algo-
 rithm can be used in software that simulates jazz
 improvisation and for implementation of composi-
 tional and teaching tools. An example of the latter is
 a GUI tool called T2G, which was used to generate
 the analyses in this article (see Figures 2, 3, 5-7, 9,
 and 11-14). T2G is also available for download at
 the URL given at the end of the previous section.
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 Future work on the tonality segmentation problem
 can focus on algorithm evaluation and comparison
 using more comprehensive test data sets, and im-
 proved models of modulations (including the use of
 statistical models).
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