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 MOVING BEYOND

 NEO-RIEMANNIAN TRIADS:

 EXPLORING A

 TRANSFORMATIONAL MODEL

 FOR SEVENTH CHORDS

 Adrian P. Childs

 Initial work applying the theories of neo-Riemannian triadic transfor-
 mations has focused primarily on late nineteenth-century chromatic rep-
 ertoire, particularly the operas of Richard Wagner.1 While the analytical
 insights provided have proven rich and stimulating, a fundamental prob-
 lem has also arisen: the composers whose works seem best suited for neo-
 Riemannian analysis rarely limited their harmonic vocabulary to simple
 triads. The first section of this paper examines this problem with a par-
 ticular emphasis on dominant and half-diminished seventh chords, har-
 monies which are prominent in the chromatic repertory and which share
 many characteristics with the consonant triads on which the neo-Rie-
 mannian theories have been built. This examination leads, in the second
 section of the paper, to the creation of a new model for these seventh
 chords. The paper closes with a preliminary exploration of some analyt-
 ical applications of the new model.
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 I

 Example 1 shows an excerpt from Amfortas's "Agony" aria in the first
 act of Wagner's Parsifal. Although triads abound, they typically occur as
 integral parts of richer harmonies, often seventh chords. To approach this
 passage with neo-Riemannian tools, we are forced to simplify the har-
 monies to focus on the triads, throwing out the sevenths of dominant sev-
 enth chords and the roots of half-diminished seventh chords.2 To be sure,

 this step does not seem outlandish, and the excerpt even seems to provide
 us with a justification: when the passage in the first measure of the exam-
 ple returns in the fourth measure (initiating what is essentially a repeat of
 the phrase, but transposed up a half step), the initial harmony is E minor,
 instead of the expected CO half-diminished seventh chord. Wagner has
 thrown out the root for us. Figure 1 shows a reduction of the first two
 measures, with the suspensions eliminated and the integral triads labeled
 (note that + and - represent major and minor, respectively). We can see
 from this sketch that the progression features pairs of hexatonic poles in
 a sequential pattern.3 This brief analysis fails to account, however, for the
 descending thirds of the upper voices and the stepwise descent in the
 "tenor" voice. That these two elements exhibit strikingly smooth voice
 leading, a feature generally associated with neo-Riemannian transforma-
 tions, suggests that something is being lost with the simplification of sev-
 enth chords into triads.

 Another example casts an even brighter light on this problem. Exam-
 ple 2 shows the beginning of the cadenza from Chopin's Prelude in
 CO Minor, op. 45, and Figure 2 shows a reduction of the first two beamed
 groups. In neo-Riemannian terms, each pair of chords in the sequence is
 generated by a Relative transformation, but this labeling is not true to the
 voice leading of the passage. The Relative transformation involves hold-
 ing the major third constant while moving the other voice by a whole
 step. The E in the A-major triad should move to the FO in the Fl-minor
 triad, but instead moves to the ignored DO while the FO comes from the
 ignored G0. Chopin's smooth voice-leading clearly indicates that the tri-
 adic model is inappropriate; but the passage also hints that a different
 model could be constructed for seventh chords, one which would involve
 all of the pitches to ensure consistency with the composer's text. In par-
 ticular, it is worth pointing out that the relationship between each chord
 in this cadenza and its predecessor is remarkably similar: two notes re-
 main constant, while the other two descend by half step.

 Cohn (1996, n. 40) points out that set classes 3-11 (consonant triads)
 and 4-27 (dominant and half-diminished seventh chords) are related by
 more than just simple inclusion. In particular, the two set classes repre-
 sent minimal perturbations from symmetric divisions of the octave.4 With
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 Example 1. Amfortas's "Agony" aria from
 Act I of Wagner's Parsifal, mm. 1369-72

 hexatonic poles hexatonic poles

 - F+ D6-. E E+ C- D-6+

 Figure 1. Reductive sketch of Parsifal, mm. 1369-70
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 Example 2. Beginning of the cadenza from
 Chopin's Prelude in CO Minor, op. 45

 A R

 A+ F-- G + F-

 Figure 2. Reductive sketch for the Chopin cadenza

 such minimally perturbed chords, it is possible to construct networks
 which involve only half-step voice leading. Such networks can be de-
 scribed with the Pn-relation (two chords are considered to be Pn-related if
 they differ by a half step in n voices while the other voices remain con-
 stant).5 Networks of P2-relations among these chords are particularly
 easy to construct, moving between chords by returning the "perturbed"
 pitch to its symmetrical "home" position and then perturbing another
 pitch. The P2-relation possibilities are even richer for set class 4-27, how-
 ever, due to the set's cardinality. In addition to considering any member
 of the set class as a minimal perturbation of a fully-diminished seventh
 chord, we can compare it to a different fully-diminished collection, one
 from which it represents a three-voice change (by half step in each voice).
 Two of these voices can be "returned," creating another member of set
 class 4-27 in the P2-relation with the first.6
 These two P2-relation properties are demonstrated in Figures 3 and 4.

 Figure 3a shows a symmetric fully-diminished seventh chord, and Figure
 3b shows a minimal perturbation from that collection, an F dominant sev-
 enth chord (the perturbed pitch is represented with a filled-in notehead).
 In Figure 3c, the perturbed pitch is returned (solid arrow), and another
 pitch is moved (dotted arrow) to produce a different member of set-class
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 4-27. Figure 4a shows a symmetric fully-diminished seventh chord, and
 Figure 4b shows the same F dominant chord, now a three-fold perturba-
 tion from the collection in Figure 4a. In Figure 4c, two of the perturbed
 pitches are returned, producing a different member of set class 4-27. That
 set class 4-27 exhibits both of these P2-relating properties suggests a
 transformational system for dominant and half-diminished seventh
 chords which would allow all four pitches to participate in parsimonious
 voice leading.

 II

 Figure 5 demonstrates a system of seventh-chord transformations
 which grows directly from the analytical and theoretical considerations
 described above. This system consists of two distinct families of opera-
 tions. The larger family is that of the S transforms, which involve hold-
 ing two pitches constant while the other two move by half step in similar
 motion. Like the neo-Riemannian operations, each of these six transfor-
 mations results in a change of mode and is involutional in nature. The
 individual transformations are labeled with a subscript that indicates the
 interval class between the two pitches being held constant and a paren-
 thetical subscript that indicates the interval class of the two pitches that
 move.' The second family is that of the C transforms, which involve con-
 trary motion for the non-fixed pitches. The subscripts for the three mem-
 bers of this family follow the same labeling convention. Since the C trans-
 forms maintain chord quality, only C6(5) is an involution. C3(2) and C3(4)
 are each other's inverses. Together, these nine transformations represent
 all of the possible P2-relations among individual members of set class
 4-27.

 (a) (b) (c)

 Figure 3

 (a) (b) (c)

 Figure 4
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 S2(3) S3(2) S3(4) S4(3) S5(6) S6(5) C3(2) C3(4) C6(5)

 F+ F- FF - C- B- D- Df- D+ Ab+ B+

 F- F+ E+ Bb+ B+ Ab+ G+ GC- D- B-
 Figure 5. A system of transformations for dominant and half-diminished seventh chords (set class 4-27). + and - refer
 to dominant and half-diminished qualities, respectively. F+ and F- are taken as the initial chords in each example.
 Notes which are held constant have open noteheads, while those that move are represented by filled-in noteheads.
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 The parsimonious nature of these transformations also allows for the
 formation of various networks, one of which is demonstrated in Figure 6.
 This cubic network contains eight members of set class 4-27 which are
 subsets of the same octatonic collection. The cube involves three of the

 S transforms, which form the solid edges, and the three C transforms,
 which form the dotted-line diagonals on the faces. Each chord is adjacent
 to all of the other chords, with the exception of the chord that is directly
 opposite it on the cube, its "octatonic pole." This octatonic grouping of
 seventh chords is quite similar to the hexatonic grouping of triads ex-
 plored by Cohn (1996), and two cyclic subgraphs of this cube-one
 formed by the alternation of S2(3) and S5(6) transforms, the other, by alter-
 nating S4(3) and S5(6) transforms-are analogous to the hexatonic Cohn
 cycle.8 Another cubic network can be constructed by replacing each of
 the S transforms with its complement (that is, the transformation which
 moves the pitches that the original keeps fixed; the complement of Sa(b) is
 Sb(a)). This cube is an analog to the Weitzmann region discussed in Cohn
 2000-each constituent seventh chord is a minimal perturbation from the
 same fully-diminished seventh chord. It seems unlikely that any compo-
 sition would be so complicated as to involve the complete network of one
 of these cubes, but there are many interesting subgraphs (both cyclic and
 not) which could be explored.

 Expanding beyond these networks, we can examine the functional
 composition of these transformations in a more general sense. Since each
 C transform can be created by combining two S transforms, we can focus
 exclusively on the latter without loss of generality.9 Figure 7a provides a
 chart that demonstrates the results of applying all double-S operations to
 a dominant seventh chord on C. Since the S transforms cause a change of
 mode, double-S transforms maintain the original mode. We can see from
 the summary in Figure 7b that all twelve of the same-mode chords can be
 reached through a double-S transform (including, of course, returning to
 the original chord through the duplication of any one involutional trans-
 formation). This means that it is possible to move from any member of
 set class 4-27 to any other member of the same modality by means of just
 two transformations, and to any member of the opposite modality with
 three (simply by appending a root-preserving S2(3) transform to the ap-
 propriate double transformation).10 Each double-S transform can also be
 used as the source for a cycle of alternating single transforms. Since the
 double-S transforms exhaust the same-mode possibilities, the lengths of
 the implied cycles will include all of the divisors of 12 if we count each
 double-S transform as a single step (or all the even divisors of 24, count-
 ing each component transformation individually). This phenomenon is
 summarized in the second row of Figure 7b.11 Of particular note are those
 cycles that contain all 24 members of set class 4-27. These include cycles
 created by alternation of complementary pairs (which exhaust the chords
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 G#+ S2(3)-- G#

 s (2) ........... .. .. sS
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 Figure 6. A cubic network which obtains among seventh chords within one octatonic collection
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 (a) Dominant seventh chords resulting from the application of a
 double-S transformation to a dominant seventh on C

 S S2(3) I S3(2) 3(4) S4(3) S6) S6(5)
 S2(3) C B F F- E D
 S3(2) C C F G E E
 S3(4) G F C C - Bl A
 S4(3) IF F B C A A6
 s,56) A Ab6 D El C B
 S6(5) 11 A E E I C

 (b) Frequency of appearance and length of implied cycle (in individual
 transformations) for double-S transformations

 SC C_ D ED E F F# I G A A B B
 frequency 6 3 2 4 12 2 4 2 2 4/ 2 3
 cycle length 1 2 24 1121 8 1 6 24 4 1241 6 8 12 24

 Figure 7

 chromatically) and those which traverse the circle of fifths (alternating
 S2(3) and S3(4) transforms, for example).

 III

 Let us now return to the musical examples. Figure 8 shows a new
 reduction of the Chopin excerpt, relabeled with +/- seventh chords and S
 transforms. The problem with voice-leading consistency has been elimi-
 nated, and the profile of the sequence is clearly outlined by the alternat-
 ing complementary S4(3) and S3(4) transforms. Figure 9 shows a relabeled
 reduction of the Wagner excerpt, which appears to consist of every other
 pair from a descending alternating sequence of the same complementary
 transformations. The triple-transform which passes between the pairs of
 chords previously identified as hexatonic poles (in the triadic analysis)
 provides an elegant explanation for the smooth voice-leading features
 which were noted previously. The single S3(4) transform accounts for the
 descending major third (interval class 4) in the upper two voices, while
 the pair of S4(3) transforms describes the descending whole-step motion
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 S4(3) S3(4) S4(3)

 A+ D - 4 -4..

 A+ D- G+ D-

 Figure 8. New reductive sketch for the Chopin cadenza

 S3(4) S4(3)S3(4).S4(3) S3(4) .S4(3)S3(4).S4(3) S3(4)

 C- F+ B6- E6+ A6- Db+

 Figure 9. New reductive sketch for Parsifal

 C3(2) C3(4) C3(4) C3(4)
 (a -) -- -- (b)

 F+ D+ F+ A,+ C+ E6+
 S3(4) S5(6)

 () : $ +* -* (d)

 c+ G- Bb+ 0

 Figure 10. Excerpts from Stravinsky's Rite of Spring
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 of the tenor voice, in conjunction with the bass line (in minor tenths
 (interval class 3) on beats one and three of each measure).

 Since this transformational model is based entirely on the set-theo-
 retic properties of seventh chords (as opposed to their acoustic proper-
 ties), it is also a useful tool for exploring atonal works in which set class
 4-27 figures prominently. Stravinsky's Rite of Spring is one such work,
 and Figure 10 shows reductions of several relevant excerpts. Figure 10a
 shows a chord progression heard in the high violins, four measures after
 RN44.12 The alternation between various dominant-seventh harmonies is

 achieved via parsimonious voice-leading, represented by C3(2) and C3(4)
 transforms. This collection of dominant seventh chords related by minor
 third is a prominent feature of the Rite, and can be represented as a trian-
 gular or tetrahedral subgraph of the cubic network in Figure 6, utilizing
 only the + nodes and the dotted C-transform lines. More complex har-
 monies can also be modeled by treating them as "vertical progressions,"
 combining two or more S- or C-related seventh chords into a single
 simultaneity. Figure 10b shows a six-note chord played by the violins at
 RN37. The second measure of the figure shows that it can be divided into
 two component seventh chords related by the C3(4) transform. Figure 10c
 shows a combined harmony from the music at RN87 (the opening of the
 second section of the Rite). The second measure again shows that it can
 be divided into three seventh-chord components, related by the S3(4) and
 S5(6) transforms. Finally, Figure 10d shows how these two techniques can
 be combined. The first harmony is the infamous Sacre chord which con-
 tains an Eb dominant seventh chord in its upper voices. When the re-
 peated chords finally end (two measures before RN22), the subsequent
 harmony is a combination of F# and C dominant seventh chords, chords
 that are related to the Eb chord by C3(4) and C3(2) transforms, respectively,
 and which are related to each other by a C6(5) transform.

 We have seen how certain properties which dominant and half-dimin-
 ished seventh chords share with the consonant triads have enabled the
 creation of a transformational model for these harmonies, and how cer-
 tain properties unique to the seventh chords have imbued the model with
 additional possibilities. Because of its ability to track all four voices of
 the chords accurately, this model is more powerful in dealing with sev-
 enth chords than one based solely on neo-Riemannian triadic transfor-
 mations. We have also examined the functional composition of the com-
 ponent transformations from the model, discovering that the individual
 operations can exhaust all harmonic possibilities in just three successive
 applications. This breadth of potential surely helps to explain the popu-
 larity of these harmonies in the later tonal repertory. Finally, we have
 explored a few preliminary avenues for the analytical application of the
 model, including expansions beyond that repertory.
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 NOTES

 An earlier version of this paper was read at the University of Wisconsin at Madi-
 son, Graduate Student Music Forum Symposium, April 5, 1997. I wish to thank
 David Clampitt, John Clough, and Richard Cohn, whose comments on previous
 drafts were especially helpful. Thanks also to Craig Wiegert, for the graphic ren-
 dering of Figure 6.

 1. See especially Cohn 1996, Hyer 1995, and Lewin 1987 and 1992.
 2. Throughout this paper, the word "root" is used in its traditional definition, and sev-

 enth chords will be labeled using their traditional roots. For an exploration of these
 seventh chords which incorporates notions of Riemannian dualist labels, see
 Gollin 1998.

 3. For a definition and examination of hexatonic systems (including the notion of a
 hexatonic pole), see Cohn 1996.

 4. Another set class with this property is Scriabin's mystic chord (set class 6-34). See
 Callender 1998 for further discussion of the properties of this collection.

 5. The Pn-relation was first developed by Douthett (unpub.) and presented and ex-
 plored in Lewin 1996. Some of the implications of P2-networks (and their cycli-
 cal sub-networks) for consonant triads are alluded to in Cohn 1996 and 2000. A
 more generalized definition of this relation is fleshed out in Douthett and Stein-

 bach 1998. As they point out, my Pn becomes Pn,o in their new model.
 6. Among the three non-trivial set classes which share this minimal perturbation

 property, only set class 4-27 can participate in P2-relations in this second manner.
 The analogous operation produces P1-relations (specifically, the P and L neo-Rie-
 mannian transformations) in triads and P4-relations in mystic chords. The gener-
 alized property produces P(k2)-relations in sets of cardinality k.

 7. For most of these transformations, the first subscript alone is sufficient as a unique
 label to describe the operation--only those which involve interval class 3 require
 additional clarification, since that interval class appears twice in any member of
 set class 4-27. However, the use of both subscripts for all of the transformations
 makes their complementary grouping (into pairs of operations, one of which moves
 the pitches that the other maintains constant) abundantly clear. I am grateful to
 Charles J. Smith for suggesting this more complete system of nomenclature.

 8. For a deeper discussion of the analogous properties of the hexatonic and octatonic
 collections with respect to set classes 3-11 and 4-27, respectively, see Douthett and
 Steinbach 1998.

 9. Based on this fact, one could argue that the C transforms are somehow unneces-
 sary to the system. However, they must be included as independent and equal
 members if all P2-relations are to be considered. In a sense, the C transforms arise
 from an added degree of freedom (in comparison to the PLR family of triadic
 transformations) created by the addition of a fourth pitch and a second moving
 pitch.

 10. While the return of the C transforms to the system expands the possible chords
 which can be reached with each n-tuple functional composition, it does not allow
 the exhaustion of all 24 chords (or the 12 same-mode chords) in fewer steps.

 11. It is worth noting that the various pairs of transformations which have the same
 result arrive at their target chords with the same overall voice-leading change.
 Since each S operation involves moving only two voices by half step, the double-
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 S transforms represent the minimal change possible in moving between the initial
 chord and the target chord.

 12. All references are to rehearsal numbers (RN) as found in the edition originally
 published by Izdatel'stvo "Muzyka," Moscow, available in reprint from Dover
 Publications.
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