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The harmonic, simple, and direct triad is the true and unitrisonic root of all 

the most perfect and most complete harmonies that can exist in the world. It is the 

root of even thousands and millions of sounds….The triad is the image of that 

great mystery, the divine and solely adorable Unitrinity (I cannot think of a 

semblance more lucid). All the more, therefore, should theologians and 

philosophers direct their attention to it, since at present they know fundamentally 

little, and in the past they knew practically nothing about it….It is much 

employed in practice and, as will soon be seen, stands as the greatest, sweetest, 

and clearest compendium of musical composition….This triad I have observed 

since boyhood (with only God and nature as my guides), I now study it by way of 

a pastime, and I hope to see it perfected with God’s help, to Whom be praise 

forever.  

− Johannes Lippius, Synopsis of New Music (Synopsis Musicae Novae).  

 

  God has wrought many things out of oppression. He has endowed his 

creatures with the capacity to create—and from this capacity has flowed the sweet 

songs of sorrow and joy that have allowed man to cope with his environment and 

many different situations.  

Jazz speaks for life. The Blues tell a story of life’s difficulties, and if you think for 

a moment, you will realize that they take the hardest realities of life and put them 

into music, only to come out with some new hope or sense of triumph. 

This is triumphant music. 

Modern jazz has continued in this tradition, singing songs of a more complicated 

urban experience. When life itself offers no order of meaning, the musician 

creates an order and meaning from the sounds of the earth, which flow through 

his instrument. 

Much of the power of our Freedom Movement in the United States has come from 

this music. It has strengthened us with its sweet rhythms when courage began to 

fail. It has calmed us with its rich harmonies when spirits were down. 

− Dr. Martin Luther King, Jr., Opening Address to the 1964 Berlin Jazz Festival. 

 

  For music…we could envisage the question of how to ‘perform’ abstract 

algebraic structures. This is a deep question, since making music is intimately 

related to the expression of thoughts. So we would like to be able to express 

algebraic insights, revealed by the use of K-nets or symmetry groups, for 

example, in terms of musical gestures. To put it more strikingly: ‘Is it possible to 

play the music of thoughts? 

− Guerino Mazzola and Moreno Andreatta, “Diagrams, Gestures and Formulae in 

Music.” 
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ABSTRACT 

This study provides an original triadic theory that combines existing jazz theory, in 

particular the chord/scale relationship, and mathematical permutation group theory to analyze 

repertoire, act as a pedagogical tool, and provide a system to create new music. Permutations are 

defined as group actions on sets, and the sets used here are the constituent consonant triads 

derived from certain scales. Group structures provide a model by which to understand the 

relationships held between the triadic set elements as defined by the generating functions. The 

findings are both descriptive and prescriptive, as triadic permutations offer new insights into 

existing repertoire. Further, the results serve as an organizational tool for the improviser and 

composer/arranger. In addition to the ability to describe individual triadic musical events as 

group actions, we also consider relationships held among the musical events by considering 

subgroups, conjugacy classes, direct products and semidirect products. As an interdisciplinary 

study, it is hoped that this work helps to increase the discourse between those in the music 

subdisciplines of mathematical music theory and jazz studies.     

.  
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CHAPTER 1.  INTRODUCTION, PRELIMINARIES, AND HISTORICAL 

CONTEXT 
 

1.1. Introduction 

This study posits an original triadic theory using mathematical permutation group theory, 

wherein group actions over a set of triads derived from the chord/scale relationship inform a 

systematic organizational method applicable to the creation of an improvisational scheme, 

analytical technique, or composition method. A mathematical group, simply defined, is a 

function acting on a set of elements. The resulting mapping of the set onto itself is called an 

action, which induces a permutation of the set itself.  

As an interdisciplinary study, this work aims to bridge the divide between jazz research 

and recent mathematic-music-theoretical work. The intended readership is that of jazz theorists 

as well as musicians. As such, mathematical concepts and definitions are introduced throughout 

the document to provide the reader with a mathematical example coupled with a discussion of a 

well-known jazz theoretical concept whenever possible. The section on set determination acts as 

a primer into jazz theory for readers with limited exposure to those concepts.  

   The branch of mathematics included herein is that of applied mathematics: not 

mathematics for mathematics sake—there are no new mathematical concepts presented in this 

study—its novelty lies in the practical application of existing mathematical concepts to an art 

form. John Rahn provides appropriate language regarding the scope of mathematical applications 

in a musical context:  

This essay is written by a music theorist who is not a mathematician. It aims, at 

least, to be comprehensible to both music theorists and mathematicians, and hopes 
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to be useful to both. It [his essay, and in this case, this document] contains some 

new music theory, but no new mathematics.
1
    

 

In the bebop era (ca.1941-55), musicians began to employ triads as a device to organize 

harmonic tensions {9, 11, 13} and their alterations. As the jazz genre progressed, new triadic 

practices developed. Harmonies with root motions based on equal divisions of the octave came 

into vogue during the post-bop period (beginning ca. 1959), a technique commonly attributed to 

John Coltrane and the players influenced by his work.
2
 Eventually, triads, emancipated from 

their functional harmonic underpinnings, came to act as stand-alone musical entities. This 

appears in three guises: (1) as superimpositions (reharmonizations) over a composition’s stated 

harmony, acting as an instrument for melodic improvisation or chordal accompaniment, as in 

Coltrane’s use of chromatic mediant harmonies over the harmonic framework of a standard tune. 

(2) As an agent to affect modal interchange (modal mixture) from collections other than the 

diatonic. For  example, E
∆
/C serves as a modal interchange replacement for IV

∆7
 in the key of G 

major, where the replacement chord derives from the C Lydian augmented scale (third mode of 

the real melodic minor
3
 built on the pitch A) thus coloring the C

∆7
 as a C

∆75. (3) As a 

compositional force wherein the inclusion of triadic structures marks important events within the 

context of a composition’s overall harmonic scheme, as in Coltrane’s “Giant Steps.” Since the 

early 1970s, the use of triads-over-bass-notes has been widely accepted as a compositional and 

improvisational device. The bass note may be a member of the triad, act as a chordal seventh, or 

be foreign to the triad. Compositions using the technique exist where the triad-over-bass-note 

                                                
1
 John Rahn, “Cool Tools: Polysemic and Non-Commutative Nets, Subchain Decompositions and Cross-Projecting 

Pre-Orders, Object-Graphs, Chain-Hom-Sets and Chain-Label-Hom-Sets, Forgetful Functors, free Categories of a 

Net, and Ghosts.” Journal of Mathematics and Music 1, no.1 (2007): 7. 

2 The post-bop period emerged during the mid-1960’s and includes such recordings as Miles Davis’s Miles Smiles, 

McCoy Tyner’s The Real McCoy, Wayne Shorter’s releases as a leader and the music of Joe Henderson. Many post-

bop musicians played an instrumental role in the development of the jazz fusion style in the 1970’s.  
3 The real melodic minor, referred to colloquially as “jazz minor,” is the ascending traditional melodic minor. In the 

real melodic minor, no adjustments are made to the descending form.   



3 

 

structures are seemingly unrelated to each other.
4
 The opening to Mick Goodrick’s composition 

“Mevlevia” is an example, in which the first five bars contain the sonorities B
∆
/E—C

∆
/E—

D
∆
/D—D

∆
/C—E

∆
/C. Nguyên Lê’s “Isoar” is another example, where the first five bars unfold 

over B
−7

—B
∆7

—F
∆
/A—B

∆
/G—A

∆
/C—D

−7
. We shall see this in subsequent analyses of Mick 

Goodrick’s reharmonization of “I’ve Got Rhythm,” and Kenny Wheeler’s composition “Ma 

Belle Hélène,”  where triads-over-bass-notes are the exclusive source of harmonic vocabulary. 

The chord/scale relationship is the means by which to reconcile two musical domains, 

melody and harmony. Jazz students first learn that musical domains are the horizontal (melody) 

and vertical (harmony). When they are told, “to solo over the D
−
 expanse in Miles Davis’s ‘So 

What,’ play D Dorian,” they relate the harmony with a scale; musical domains, however, are 

rarely so neatly separable. We can generate chords from scales, as in basic diatonic theory; 

conversely, we may generate scales from chords. An example of the latter is the chord 

G
7
 
9,11,13

. Harmonic notation, assuming ascending generic thirds, indicates the pitch collection 

{G,B,D,F,A,C,E}—a modal presentation of an ascending D melodic minor scale.   

Harmonic function affects chord/scale determination. The manner in which harmony and 

melody interact owes much to musical context within a global setting. For example, the chord C
7
 

may contain the unaltered tensions (9,13), as is the case when C
7
 functions as V

7
, invoking 

Mixolydian as the chord/scale relation. However, C
7
 can also function as a secondary dominant, 

for example, V
7
/VI

− 
in the key of A major. Here, harmonic function generates the altered 

tensions (9,13), and the chord/scale relationship must be modified to fit this new image of C
7
. 

                                                
4 Nontraditional triadic approaches occur in other modern genres as well. Rebeca Mauleón-Santana describes the 

practice in Latin piano montunos. See,  Rebeca Mauleón-Santana, 101 Montunos. (Petaluma, CA: Sher Music 

Company, 1999), 128-9. Kevin Bond and Kevin Powell feature triadic techniques as stylistic hallmarks in 

contemporary gospel music. In fact, during the author’s decades of performing contemporary gospel music, I 

observed the triad-over-bass-note technique to be the preferred method by which gospel musicians communicate 

harmonic structures. For example, C−7 is described as E
∆/C and G7 9,13 is described as E∆/G where members of E∆ 

relate to G7: E = 13, G = A = 9, B = 3. 
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Therefore, we cannot narrowly define the chord/scale relationship as strictly a melodic or 

harmonic device.  

Return to the students playing “So What,” and say one student plays a chordal instrument 

and that he/she is accompanying a soloist. As for the soloist, the music created is based on the 

relationship between the composition’s stated harmony and its corresponding scale. Now 

consider the chordal player. If however, the chordal player were to provide harmonic support 

with non-tertian chord voicings, e.g. a stack of generic fourths, and run these voicings through 

the prism of D Dorian, is the resultant music domain based on a chord/chord relationship, a 

scale/scale relationship, or does it retain the chord/scale relationship? It is the latter. Although the 

accompanist is producing simultaneities based on the pitches contained in D Dorian over D
−
 

harmony, the chord/scale relationship remains the definitive factor of musical domain.  

We define a set in its mathematical sense, as the consonant triads generated by a specific 

scale, upon which the group will act, henceforth referred to as the scale’s constituent consonant 

triads. This practice folds we tie mathematical concepts into an existing musical theoretical 

framework that is easily understood by jazz musicians. Having defined a set, we then apply a 

function to the set to form a mathematical group. Permutations generated by the group can be 

used to identify, analyze, and create musical events based on relationships within the group’s 

structure. Regarding the concepts of function verses relation, Bert Mendelson, in Introduction to 

Topology, describes their difference as follows:  

A function may be viewed as a special case of what is called a relation. We are 

accustomed to thinking of one object being in a given relation to another; for 

example, Jeanne is the sister of Sam or silk purses are more expensive than sow’s 

ears. To say that the number 2 is less than the number 3, or 2 < 3, is thus to say 

that (2,3) is one of the number pairs (x,y) for which the relation “less than” is 

true.
5
    

 

                                                
5 Bert Mendelson, Introduction to Topology , 3rd ed. (New York: Dover Publications, Inc.), 15. 
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In music theory, we also find function to be a special case of a given musical relation. Take two 

pitches, C4 and G4. We say that G4 is an upper fifth to C4 and call this a relation. To generate G4 

from C4, we invoke a transposition up seven semitones, T7, and call this a function. Similarly, we 

can generate G3 from C4 through motion by directed interval class (i.c.) −5, and call this either a 

relation or a function. Nevertheless, can we not say that T7 is both a function and a relation? Or 

describe the musical instruction “in bar 8 move to the upper fifth of C” as a function, as it 

generates the next event, and accept the answer “an upper fifth” to the question “what is the 

chord in bar 8” as a relation?  

To expand this concept, we say that in the key of C major, the relation of F
−
 to C

∆
 is that 

of a modally inflected subdominant, generated by the binary function on C
∆
, transposition by i.c. 

5, and reversing chord quality (parity).
6
 Additionally, we may generate F

−
 from C

∆
 through 

inversion (I0) in pitch-space, (     )
  
→ (     ) and say F

−
 and C

∆
 relate by I0. How do we 

define the difference between function and relation? Perhaps a better question is not how but 

why we differentiate between the two. In the present study, the group G is generated by the 

function(s), <f>, acting on a set of triads S, written G := (S, f), which generates a set of k 

                                                
6 The incorporation here of the term parity agrees with usage in triadic-based neo-Riemannian theories from which 

many of the ideas in this study derive. The basic definition of parity in mathematics is the term that states if an 

object is even or odd. Note the general use of the term object. In mathematics, an object can be an integer, where 

parity describes whether the integer is even or odd. An object can be a permutation, where parity describes the 

number of transpositions held in permutation decomposition. (We shall see more on this use during the discussion of 

alternating groups.) An object can be a function, where parity describes how its values change when its arguments 

are exchanged with their negations. An object can be coordinates in Euclidean space with dimensions ≥ 2, and so on. 
Julian Hook, in “Uniform Triadic Transformations,” Journal of Music Theory 46, nos. 1-2 (2002): 57-126, provides 

the following notation for triadic transformations: <σ,x,y>. The possible values for x and y are {0…11} to denote 

levels of transposition where x = major triads and y = minor triads. The variable σ  shows if the transformation 

preserves the triad’s mode (shown with the symbol +), or if the transformation reverses the triad’s mode (shown 

with the symbol −). Therefore, parity describes whether a constituent triad is major or minor and what happens to 

the quality under some operation.     
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permutations on the elements of S; we also consider the triads contained in S to be k-related, and 

name this relation according to the degrees of f that generate k.  

 This dissertation comprises five chapters. The introductory chapter, Chapter 1, includes a 

literature review, a section on mathematical preliminaries, and a discussion of nontraditional 

triadic usage within a historical context. Chapter 2 addresses set definition and contains an 

overview of functional harmony as it applies to jazz, followed by a section on chord/scale 

relationships. A survey of existing triad-based improvisational methods closes Chapter 2. 

Chapter 3 addresses various group actions on triadic sets. At the beginning of Chapter 3, a scale 

roster presents nine unique scales that generate the triadic sets required to investigate the group 

actions. Groups are delineated by the size (cardinality) of the sets upon which they act; sets of 

orders 3 through 8 are discussed and modeled on geometric objects that includes two-

dimensional n-gons and certain Platonic solids in three-dimensions. Chapters 2 and 3 contain 

analyses of existing compositions using the Permutational Triadic Approach; material in Chapter 

4 focuses on application by offering examples of reharmonization and improvisational schemes. 

Chapter 4 closes with discourse on a specific harmonic system often found in the music of John 

Coltrane. These triadic permutations tie into the neo-Riemannian transformations geometrically 

modeled on Cayley digraphs and toroidal polygons. Chapter 5 serves as a conclusion and offers 

questions for further application/research.            

1.2. Literature Review 

 The literature review is organized into subsections that cover the components of the 

Triadic Permutational Approach separately. The subsection on jazz literature includes topics 

such as functional harmony, the chord/scale relationship, and triadic specific improvisational 

methods. The triadic- theory literature subsection covers neo-Riemannian transformational 
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theory, work pertaining to triadic chromaticism, and studies on voice-leading. The mathematical 

literature subsection covers topics limited to group-theoretical applications and generalized 

transformational theories. The literature review addresses the sources pertinent to the central 

argument presented within this study and does not claim to be an exhaustive account of the 

existing literature on any of the topics. For example, there are a number of reliable sources 

pertaining to the chord/scale relationship, and the inclusion of a particular method in this study 

does not infer that the author implicitly endorses that method over any other. Technical terms 

introduced in this section are defined in subsequent sections.  

1.2.1. Jazz Literature 

 Barrie Graff and Richard Nettles provide a theory of functional harmony, analytical 

techniques, and a method for chord/scale determination.
7
 The functional-harmony analytical 

symbols and the chords/scale theory used in this work come from Graff/Nettles.
8
 Wayne Naus 

describes non-functional harmony as an extension of the functional harmony theories found in 

Graff/Nettles.
9
 Ron Miller’s study of modal harmony includes modes from scales other than the 

diatonic, for example, what Miller calls “altered diatonic scales”: real melodic minor, harmonic 

minor, harmonic major, and real melodic minor  5. Miller’s study provides us with the ability to 

(1) include altered diatonic scales as modal generators, and (2) allow altered diatonic modal 

harmonies to act as modal interchange chords (modal mixture).
10

  

                                                
7
 Barrie Nettles and Richard Graf, The Chord Scale Theory and Jazz Harmony (Rottenberg: Advance Music, 1997). 

Functional harmony refers to harmony discernible in a key. This includes diatonic harmony, applied dominants, 

modal interchange, and tonic systems (chromatic mediant related harmonies) as long as the tonic system has a 

functional harmony as its object of resolution.    
8
 Chord/scale relationship is a generic term for the relationship between a chord and an associated scale while 

chord/scale theory is the specific name given to the work of Graff and Nettles. 

9 Wayne Naus, Beyond Functional Harmony  (n.p.: Advance Music, 1998). 
10 Ron Miller, Modal Jazz Composition and Harmony, vol.1 (Rottenburg: Advance Music, 1996). 
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1.2.2. Chord/Scale Relationship Literature 

 Chord/scale relationships derive from a number of musical criteria. Jamey Aebersold’s 

“scale syllabus,” which he attributes to David Baker, is a method of chord/scale determination 

based solely on chord quality.
11

 Aebersold lists common chord qualities, some with harmonic 

tensions, then recommends a number of possible scales. While the pedagogical importance of the 

“scale syllabus” is undeniable, it neglects functional harmonic considerations. Therefore, this 

study adheres to the Graff/Nettles model, wherein a chord’s function, as well as its quality, 

informs chord/scale determinations.   

In The Lydian Chromatic Concept of Tonal Organization for Improvisation, George 

Russell describes a collection of seven scales, organized around a Lydian-based “parent scale,” 

thereby defining a set of possible scale choices over a given harmony.
12

 He provides a systematic 

method by which to organize scales based on their varying degrees of dissonance between the 

harmony and the scale. With Russell’s method, we also gain the ability to transition from one 

scale type, henceforth referred to as a scale genre (diatonic, altered diatonic, symmetric), to 

another scale genre based upon an initial scale choice (the parent scale).     

1.2.2. Triadic Specific Methods for Jazz Improvisation 

 The following sources are improvisational methods based on the manipulation of triads. 

There are two reasons for this focus: first, the triad is uniquely aurally identifiable; second, a 

player attempting to perform the repertoire presented here should already possess an 

understanding of triads on their instrument. Gary Campbell and Walt Weiskopf, in separate 

                                                
11

 Jamey Aebersold, A New Approach to Jazz Improvisation (New Albany, IN: Aebersold Jazz Inc., 1975) and Jazz 

Handbook (New Albany, IN: Aebersold Jazz Inc., 2010). 

12
 George Russell, The Lydian Chromatic Concept of Tonal Organization for Improvisation (New York: Concept 

Publishing Company, 1959). 
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publications, describe an improvisational technique that uses triad pairs as the generators of 

melodic lines. Chord/scale relationships dictate from which scales the triad pairs derive. For 

example, if G
7
 is the stated harmony, G Mixolydian is one possible corresponding scale, of 

which triads D
−
 and E

−
 are subsets; therefore, the set {D

−
, E

−
} is a viable triad pair for use over 

G
7
.
13

  

George Garzone’s Triadic Chromatic Approach uses an arbitrary triad choice, where the 

selection of triads is free of any chord/scale prerequisite. In Garzone’s approach, he allows any 

triad to follow any other triad given that no two consecutive triads appear in an invariant 

inversional position: 
 
 

 cannot follow 
 
 

;  
 
 

 cannot follow 
 
 

; 
 
 

 cannot follow 
 
 

.
14

 Suzanna Sifter’s 

recent work on upper-structure triads focuses on triads superimposed over seventh-chords as a 

method to manage harmonic tensions (extensions) in piano voicings.
15

 While not a study 

dedicated entirely to triads, David Liebman’s A Chromatic Approach to Jazz Harmony and 

Melody presents a method by which the musician may increase the amount of chromaticism in 

one’s playing by using polytonal triads  to generate melodic lines and harmonic structures.
16

  

1.2.3. Triadic Theory 

 Neo-Riemannian theory plays an important role in our current understanding of triadic 

theory, and more specifically, of consonant triads in chromatic settings. It also offers 

transformational analytical tools beyond the traditional transposition and inversion operators.
17

 

                                                
13 Gary Campbell, Triad Pairs for Jazz: Practice and Application for the Jazz Improviser (n.p.: Alfred Publishing, 

n.d.); Walt Weiskopf, Intervallic Improvisation, the Modern Sound: A Step Beyond Linear Improvisation (New 

Albany, IN: Aebersold Jazz Inc., 1995). 
14 George Garzone, The Music of George Garzone and the Triadic Chromatic Approach, DVD (n.p.: Jody Jazz, 

n.d.). 
15 Suzanna Sifter, Using Upper-Structure Triads (Boston: Berklee Press, 2011). 
16 David Liebman, A Chromatic Approach to Jazz Harmony and Melody (Rottenburg: Advance Music, 2001). 
17

 Although the use of Riemannian transformations in jazz literature is a relatively recent development, use of 

Riemannian concepts in European jazz scholarship existed as early as 1953. See Alfred Baresel, Jazz-

Harmonielehre (Trossingen: M. Hohner, 1953). See also, Renate Imig, Systeme der Funktionsbezeichnung in den 
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The amount of literature of neo-Riemannian theory is extensive.
18

 However, the work on jazz-

based neo-Riemannian theory and mathematically-based triadic theories is less extensive. 

Representative examples of such research includes Guy Capuzzo’s investigation of the 

intersection between guitarist Pat Martino’s concept of guitar fretboard organization and neo-

Riemannian theory,
19

 and Keith Waters’s neo-Riemannian based analysis of Miles Davis’s 

composition “Vonetta,” where he takes neo-Riemannian theories and allies the  to seventh-chord 

structures derived from the real melodic minor collection. Waters also employs neo-Riemannian 

analytical techniques in two-dimensional and three-dimensional geometric spaces to model the 

[0148] hexatonic subset he finds important in jazz repertoire after ca. 1960.
20

 Maristella Feustle 

also takes up the use of neo-Riemannian techniques for the analysis of seventh-chords in post-

bop jazz.
21

  

 Richard Cohn and Jack Douthett investigate the relationships of triads derived from 

symmetric scales, and use mathematical concepts and geometric objects to model those 

relationships. Cohn’s related work is rooted in the Weitzmannian
22

 and Riemannian traditions 

and focuses on the triad’s role in chromaticism in the music of the middle- to late-nineteenth 

century. Cohn provides numerous geometric examples, one being his Hyper-Hexatonic System, 

                                                                                                                                                       
Harmonielehren seit Hugo Riemann (Düsseldorf: Gesellschaft zur Förderung der systematischen 
Musikwissenschaft, 1970).  
18 See, for example, Brian Hyer, "Reimag(in)ing Riemann," Journal of Music Theory 39, no.1 (1995): 101–13, and 

Journal of Music Theory’s special issue on neo-Riemannian theory, Journal of Music Theory 42, no.2 (1998); 

Edward Gollin  and Alexander Rehding, eds., The Oxford Handbook of Neo-Riemannian Music Theories (Oxford: 

Oxford University Press, 2011). 
19

 Guy Capuzzo, “Neo-Riemannian Theory and the  Analysis of Pop-Rock Music,” Music Theory Spectrum 26, no.2 

(2004): 177-200; “Pat Martino’s The Nature of the Guitar: An Intersection of Jazz Theory and Neo- Riemannian 

Theory.” Music Theory Online 12, no.1 (February, 2006). http://mtosmt.org/issues/mto.06.12.1capuzzo.pdf 

(accessed March 1, 2010). 

20 Keith Waters, “Modeling Diatonic, Acoustic, Hexatonic, and Octatonic Harmonies and Progressions in 2- and 3-
Dimensional Pitch Spaces; or Jazz Harmony after 1960,”Music Theory Online 16, no.3 (May, 2010). 

http://mto.societyofmusictheoty.org/mto.10.16.3.waters.williams.html (accessed June 2, 2010) 
21

 Maristella Feustle, “Neo-Riemannian Theory and Post-bop Jazz: Applications of an Extended Analytical 

Framework for Seventh Chords” (master’s thesis, Bowling Green University, 2005).  
22 Carl Friedrich Weitzmann, Der übermässige Dreiklang (Berlin: T. Trautweinschen, 1853). 

http://mtosmt.org/issues/mto.06.12.1capuzzo.pdf
http://mto.societyofmusictheoty.org/mto.10.16.3.waters.williams.html
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which draws upon Weitzmann’s work on the augmented triad. In this system, the four unique 

augmented triads act as a source set, which partitions all twenty-four consonant triads into four 

“Weitzmann regions” [Cohn’s term] through parsimonious voice leading techniques.
23

 Two 

source augmented triads that flank each hexatonic region, when taken as a set union, obtain a 

unique hexatonic collection.
24

 Figure 1 is an adaptation of Cohn’s Hyper-Hexatonic System, 

substituting the harmonic notation for consonant triads used in the remainder of this document 

for Cohn’s labels.  

Possible applications to jazz are readily apparent. The major triads from Coltrane’s 

“Giant Steps” live in the “Western” region, and the triads in the bridge to “Have You Met Miss. 

Jones” live in the “Southern” region. The Hyper-Hexatonic System explains the definition of 

hexatonic regions as a set based on their constituent consonant triads. The scale collection 

generated by the set union of a region’s triads represents a possible chord/scale choice applicable 

to the harmonies contained within that region. Therefore, we gain the ability to unfold triadic 

permutations from the “Western” region over the changes to “Giant Steps.”  

                                                
23 Richard Cohn,  Audacious Euphony: Chromaticism and the Consonant Triad’s Second Nature (Oxford: Oxford 

University Press, 2012): 59-81 
24

 Richard Cohn, “Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic 

Progressions,” Music Analysis 15, no.1 (1996): 9-40. See also, “Weitzmann’s Regions, My Cycles, and Douthett’s 

Dancing Cubes,” Music Theory Spectrum 22, no.1 (2000): 89-103 [94-6]. See also, “Square Dances with Cubes,” 

Journal of Music Theory 42, no.2 (1998): 238-96; “Neo-Riemannian Operations, Parsimonious Trichords, and their 
“Tonnetz” Representations,” Journal of Music Theory 41, no.1 (1997): 1-66. 
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Figure 1. Cohn’s Hyper-Hexatonic System
25

 

Douthett employs a graph-theoretical approach to construct mode graphs showing 

parsimonious triads associated with the hexatonic, octatonic and enneatonic collections. He then 

tiles a torus with a discrete lattice, calling it his “Chicken-Wire Torus” in reference to  the 

resulting hexagonal faces. The Chicken-Wire Torus is the geometric dual of the Tonnetz. 

Douthett describes the symmetries of the torus using group-theoretical concepts.
26

 He illustrates 

octahedral symmetry as symmetries of the octahedron, cube, and a composite figure displaying 

their geometric duality.
27

  

                                                
25 Cohn, “Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic Progressions,” 

24. 
26  Jack Douthett and Peter Steinbach, “Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, 

and Modes of Limited Transposition,” Journal of Music Theory 42, no.2 (1998): 241-63.  

27
 Jack Douthett, “Filtered Point-Symmetry and Dynamical Voice-Leading,” in Music Theory and Mathematics: 

Chords, Collections and Transformations, edited by Jack Douthett, Martha M. Hyde, and Charles J. Smith, 72-106 
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Dmitri Tymoczko also includes octahedral geometric duality in his voice-leading 

theories, offering an intensive study of geometric models using elaborate networks and lattices 

(in the form of chord lattices and a scale lattices) to model musical transformations.
28

 Some 

lattices take the form of concatenated cubes in higher spatial dimensions where he describes 

networks defined by the cubes’ edges and vertices.
29

 In A Geometry of Music, Tymoczko devotes 

an entire chapter to jazz; he unfortunately suspends the rigorous mathematical descriptions in 

this section.     

1.2.4. Group Theory Literature  

   An overview of pertinent group-theoretical literature follows. Iannis Xenakis, in 

Formalized Music, explains the rotational symmetry group of a cube, which he uses as an 

organizational system in his composition Nomos Alpha.
30

 Robert Peck explains the rotational 

symmetries of the cube in group-theoretical terms in his analysis of  Nomos Alpha.
31

 Peck also 

provides additional work addressing many other groups and includes discussions on their actions 

over symmetric scale collections.
32

 Alissa Crans, Thomas Fiore and Ramon Satyendra describe 

the musical actions of two dihedral groups—the transposition and inversion group and the  

                                                                                                                                                       
(Rochester: University of Rochester Press, 2008). The figure displaying the octahedron’s and the cube’s geometric 

duality is shown in this paper’s section on octahedral symmetry. 

28 Dmitri Tymoczko, “The Generalized Tonnetz,” Journal of Music Theory 56, no.1 (2012): 6-10. 
29 Dmitri Tymoczko, “Scale Networks and Debussy,” Journal of Music Theory 48, no.2 (2004): 219-294; A 

Geometry of Music (Oxford: Oxford University Press, 2011). 
30 Iannis Xenakis, Formalized Music (Stuyvesant, NY.: Pendagron, 1992): 219-21.   
31 Robert Peck, “Toward an Interpretation of Xenakis’s Nomos Alpha” 
32

 See, Robert Peck, “Imaginary Transformations,” Journal of Mathematics and Music 4, no. 3 (2010): 157-71; 

“Generalized Commuting Groups,” Journal of Music Theory 54, no.2 (2010): 143-77. 
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neo-Riemannian group—where they show that both are isomorphic
33

 to the dihedral group of 

order 24.
34

 Paul Zweifel generalizes scales using group theory making extensive use of cyclic 

groups.
35

  

1.3. Mathematical Preliminaries 

 The following preliminaries address the Permutation Triadic Approach’s mathematical 

components. This section contains definitions, a preliminary example of group actions on a 

familiar musical object, and an overview of the neo-Riemannian group.  

Definition 1. Set  

 A set defines an inclusionary relationship of elements within a single definitive 

criterion.
36

 We may define a set for any type of object, for example, ℤ is the set of all integers 

and ℝ is the set of all real numbers, both of which are examples infinite sets. Certain musical 

sets, such as the diatonic collection under octave equivalence, or triads that derive from specific 

scale collections are examples of finite sets. The salient relationship between sets in present 

study is the determination of set-element membership. Define the set N := {0…11}, the set of  

integers modulo 12 or ℤ12, which is mapped to the pitch classes in chromatic-pitch-class space, 

the set P := {C,C,D,…B}. Define the set C as pitch classes of the (0, 0) diatonic, 

                                                
33 A definition of isomorphism is provided in the mathematical preliminaries section of this study. 
34 Alissa S. Crans, Thomas M. Fiore, and Ramon Satyendra, “Musical Actions of Dihedral Groups,” The American 

Mathematical Monthly 116, no.6 (2009): 479-495. 
35

 Paul F. Zweifel, “Generalized Diatonic and Pentatonic Scales: A Group-Theoretic Approach,” Perspectives of 

New Music 34, no.1 (1996): 140-161.  
36 This discussion covers well-known set theoretical concepts applicable to the present study. For sources dealing 

with set theory in musical contexts see, Allen Forte, The Structure of Atonal Music (New Haven: Yale University 

Press, 1973); John Rahn, Basic Atonal Theory (Englewood Cliffs, NJ: Prentice-Hall, 1981); Joseph N. Straus, 

Introduction to Post-Tonal Theory, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 2004). 
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corresponding to the elements in N, C := {0,2,4,5,7,9,11}. Set C is described in purely musical 

terminology as the C major scale. We are now able to answer the question of element 

membership. Is pitch class (p.c.) 4 a member of C (written p.c. 4 ∊ C)? The answer is yes. 

However, p.c. 6 is not a member of C and we write p.c. 6 ∉ C. Other pertinent set relationships 

include the following: set union, shown with the symbol ∪; set intersection, shown with the 

symbol ∩; set cardinality, written as |X|; superset, ⊃; and subset ⊂. Define the set K as the triad 

pair K := {C
∆
, D

−
}, and the set L := {E

−
,F

∆
}. K ∪ L = {C

∆
, D

−
, E

−
, F

∆
}. Then, specifically in 

regards to p.c. content, is K ∪ L ∊ C? The answer is true; moreover, C ⊃ K and C ⊃ L (which 

reads as follows: C is a superset of K and C is a superset of L); K ⊂ C and L ⊂ C (K is a subset 

of C and L is a subset of C). Define the set M := {0,1,3,5,6,8,10), the p.c. content of a 5 

diatonic, the D major scale. Therefore, C ∩ M, the intersection of sets C and M, equals {0,5}, 

which consists of pitch classes 0 (p.c. C) and 5 (p.c. F). Set cardinality is the set’s size, the 

number of elements contained within the set; therefore, |C| = 7 and |K| = 2.  

Definition 2. Group    

A group, for this definition labeled Ф, is an order pair Φ := (Q, f ) where Q represents a 

set and f  is a function (action) on Q. A group must hold all of the following properties:  

(1) The set must be closed under f. 

(2) f is associative. 

(3) There is an identity element, shown as i.  
(4) Each element x has an inverse, shown as x

−1
.  

We shall now redefine a group, using set-theoretical language; numeration of set-

theoretical definitions corresponds to those in the group-theoretical definition.   

(1) For all     Φ         Φ.
 37

  

(2) For all       Φ (     )           (     ). 

(3) There exists    Φ such that, for all   Φ              .  

(4) For all   Φ, there exists     Φ such that                   .38
 

                                                
37 The symbol ∙ shows a multiplicative action on group members. x ∙ y reads as, do x to Φ then do y to Φ. 
38 Adapted from F.J. Budden, The Fascination of Groups (Cambridge: Cambridge University Press, 1972), 73-4. 
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 Group-actions describe bijective (one-to-one and onto) symmetries of a set.
 39

 For 

instance, the so-called symmetric group of the set consists of all mappings of the set onto itself. 

This group action type, especially on a finite set, is considered a permutation group. The notation 

that shows group actions on a set, and, if required, the specific resulting permutation(s), takes the 

form, 

(Q(n), G(x)): y. 

Assuming our set represents a scale or some other referential pitch collection, Q(n) is the set, 

where n represents the set’s pitch-level in pitch-class space. G is the group that is acting on Q(n), 

where (x) represents the order (size) of G. Order describes the number of unique permutations 

within a group. y denotes the permutation(s) of (Q(n), G(x)) and  y is called a member of (Q(n), Gx). 

Musically, groups appear in numerous ways.  

1. Group-actions as concatenations: 

((Q(n), Gx): y), ((Q(n), Gx): z)   

Here, one permutation of (Q(n), Gx) follows another (z follows y). However, neither the set nor 

the group is required to be the same for each iteration. For instance, a diatonically generated set 

may precede an octatonic set, or a set generated by Oct(0,1) may precede a set generated by 

Oct(2,3). Similarly, the group acting on the set in the first iteration may differ from the group 

acting on the same set in the second iteration. 

2. Group actions over a single stated harmony (k): 

 ( )  ( )  

 
 

                                                
39

 A bijection is a function that provides an exact pairing of the elements of two sets. Every element of one set is 

paired with exactly one element of the other set; every element of the other set is paired with exactly one element of 

the first set. There are no unpaired elements and no two elements of one set map to a single element of the other set.  

In mathematical terms, a bijective function  f: X → Y is a one to one and onto mapping of a set X to set Y. A 

permutation is a bijective mapping a set to itself. For more on bijective functions, see Moore, 13-4. 
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Let k be G
7
 in the key of C major and put Q as the constituent consonant triads in G Mixolydian 

and define a group with an action on Q to be played (musically) over k.  

3. Group actions over a harmonic progression: 

 ( )  ( )   

(     )
 

Elements (h, j, k) represent harmonies contained in a chord progression, defined for this example 

as (D
−7

, G
7
, C

∆7
), II

−7
—V

7
—I

∆7
 in the key of C major. The set C was previously defined as a (0, 

0) diatonic. Define the set C´ as the set of consonant triads contained in C,  

 C´ := {C
∆
, D

−
, E

−
, F

∆
, G

∆
, A

−
}, and have a group act on C´  to create music over (h, j, k). 

 Group action and permutation are similar concepts, but there is a subtle distinction. Let S 

be a set and G be a group. In simplest terms, the action of a group element is a member of a 

homomorphic mapping of S × G → S. In contrast, a permutation is merely a rearrangement of 

the elements of S, a mapping of S onto itself. The action of G on S induces a permutation of S’s 

elements, but it is not a permutation, per se. It is rather a matter of perspective. Consequently, 

both terms are used throughout this document, with sensitivity to that perspective. (This practice 

appears with frequency in the relevant literature.) 

Definition 3. Sn 

 The full symmetric group on a set of degree n defines all possible permutations on n 

elements. The order of Sn is |n!|.
40

 Sn has connotations on our use of geometric shapes that model 

n elements. |S4| = 4! = 1 × 2 × 3× 4 = 24. If we were to attempt to model S4 on a square, we 

would be required to wound distort, twist, or topologically modify the square to show certain 

permutations. If we frame our argument as one that only considers continuous rigid motions of 

                                                
40

 Joseph A. Gallian, Contemporary Abstract Algebra, 5th ed. (New York: Houghton Mifflin, 2002),  95-6. 
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the geometric object i.e., not allowing a twist or other distortions, we must consider subgroups of 

S4.
41

       

Definition 4. Subgroup 

 If a subset H of group G is itself a group under the operation of G, H is a subgroup of G, 

written H < G. Define the group G as the transposition group Tn as it acts on the set S := {the 

twelve major triads}. Then define the group H as the function T3 acting on the set Q := 

{C
∆
,E

∆
,G

∆
,A

∆
}.

42
 H is a subset of G and H is indeed a group, therefore, H < G. However, as 

Gallian states, “ℤn under modulo n is not a subgroup of ℤ under addition, since addition modulo 

n is not the operation of ℤ.”
43

  

 Lagrange’s theorem states that if G is a finite group and H is a subgroup of G, then |H| 

divides |G|. With Lagrange’s theorem, we can extrapolate a list of subgroup candidates based on 

the orders of the subgroups. For instance, if |G| = 12, it may potentially have subgroups of order 

12, 6, 4, 3, 2, 1.
44

   

Definition 5. Cyclic notation 

 Cyclic notation is the notation used to show permutation representations, 

consisting of set elements and parentheses, where integers represent set elements, and the 

parentheses represent orbits of set elements or the stabilization of set elements (i.e., an 

element is stabilized if it does not permute to another member of the set). By convention, 

cyclic notation omits stabilized elements. If a set element does not appear in the cyclic 

notation, that element (or elements) is (are) assumed to be stabilized.  

                                                
41 For more on Sn, see, John T. Moore, Elements of Abstract Algebra, 2nd ed. (New York: Macmillan Company, 

1967), 77.   
42 The musical transposition and inversion group (T/I) is the group generated by Tn, the mapping of a pitch-object by 

n semitone(s) and inversion, the mapping of a pitch-object to its ℤ12 inverse. 
43 Gallian, 59-60. 
44 Gallian., 137-8. 



19 

 

Let us look at examples of cyclic notation using permutations of a set containing 

three elements {1, 2, 3}.  The identity group element, i, reads in cyclic notation as 

(1)(2)(3) where each set element maps to itself, equivalent to doing nothing to the set, the 

set appears as it did prior to applying the function. Cyclic notation showing the 

permutation (123) reads as follows: 1 maps to the position previously held by 2, 2 maps 

to the position previously held by 3, and 3 maps to the position previously held by 1 

(wrapping around from the last parenthesis to the first). The same permutation could be 

written (231), or (312), as the action on the set is the same, 1 ↦ 2; 2 ↦ 3; 3 ↦ 1. 

Permutation (23) reads as follows: 2 maps to the position previously held by 3, 3 maps to 

the position previously held by 2, and 1 is stabilized; 1 remains at its point of origination 

(i.e., is stabilized). 

Each permutation representation of a group action shows a unique mapping of set 

elements, generated by some product of the group’s generator(s). We give multiple 

actions as an ordered n-tuple. For example, the ordered duple <x,y> means “do x, then do 

y.” We will use left functional orthography, in which x is followed by y.
45

   

Definition 6. Orbits and stabilizers 

John Dixon and Brian Mortimer provide the following definition,  

When a group G acts on a set S, a typical point α is moved by elements of G to 

various other points. The set of these images is called the orbit of α under G, and 

we denote it by 

    {   |        
A dual role is played by the set of elements in G, which fix a specified point α. 

This is the stabilizer of α in G and is denoted. 

    {    |        46
 

 

                                                
45

  Right functional orthography (where the example would read y followed by x) occurs in many mathematical 

texts. This study employs left functional orthography exclusively. 
46 John D. Dixon and Brian Mortimer, Permutation Groups (New York: Springer, 1996), 7-9. 
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The orbit’s periodicity, or order, is of great interest, as understanding the correlation 

between orbit order and the generative permutation aids in the identification of applicable 

subgroups and the identification of equivalency classes.  

Definition 7. Homomorphism 

 A homomorphism from a group G to a group G´ is a mapping δ from G to G´ that 

preserves the group operation; that is, δ(ab)   δ(a)δ(b) for all a,b in G.
47

 A homomorphism is a 

generalized isomorphism (see the following section). 

Definition 8. Isomorphism 

Isomorphism is a bijective (one-to-one and onto) homomorphism, where the mapping μ 

from group G to group G´,   
 
→    , preserves the group operation, μ(xy) = μ(x)μ(y) for all x,y in 

G.
48

 If there exists an isomorphism from G to G´ we say G and G´ are isomorphic and write G ≅ 

G´. For example, the group of symmetries of the set N := (0…11) (ℤ12) under addition is 

isomorphic to the set of symmetries of the set P of pitch classes in chromatic space under 

transposition. Therefore, we write N ≅ P.   

Definition 9. Automorphism  

 An automorphism is an isomorphism where a mathematical object is mapped to itself. 

The automorphism group of the set is also referred to as the full symmetric group on the set, 

written S(x), and has the order |Sym(x)| = x!. As an introductory example, let us consider a 

rudimentary group structure to which we shall return, the symmetries of an equilateral triangle. 

For musical relevance, let the three unique octatonic collections be the elements of the set  

 

                                                
47 Gallian, 194-5. 
48 Budden, 118-20. 
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B := {1 = Oct(0,1) = {0,1,3,4,6,7,9,10};  2 = Oct(1,2) = {1,2,4,5,7,8,10,11};  3 = Oct(2,3) = 

{2,3,5,6,8,9,11,0}. Plot the elements of B on the triangle’s vertices. Listed below each triangle is 

a permutation representation, i.e., (i, r, r
−1

, f (a...c)) with the corresponding mapping shown in 

cyclic notation.  

        

Figure 2. Symmetries of the triangle  

 

There are two types of generators for the full symmetry group of a triangle: rotation and 

reflection. The group is of order 6, with the following group members: identity (i), rotation by 

120
o
 (r), inverse rotation (r

−1
), and three distinct reflections (f ) through axes (a…c). The 

subgroup generated by rotations on n elements is isomorphic to the cyclic group on n elements, 

written Cn. In the present case, r
3
 = i, which means r, performed three times returns the identity. 

Define the group J: = (B, C3), shown in the top row of Figure 2. Adding a generative reflection 

on B to J produces the group K, which is isomorphic to the dihedral group of order 6. This group 

1 

2 3 

  

  i = (1)(2)(3) 

 

    T
(0,3,6,9)  

  

   r = (123) 

 

    T
(1,4,7,10)

 

  

1 

3 

2 

  

   r
−1

 = (132) 

        

      T
(2,5,8,11)

 

  

1 

2 

3 

  

  a  = (23) 

 

    I
(1,4,7,10)

 

  

1 

3 2 

  
3 

2 

1 

  

   c = (12) 

   

     I
(2,5,8,11)

 

  

1 2 

3 

  

   b  = (13) 

 

     I
(0,3,6,9)
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is written D6, and is shown in the bottom row of Figure 2.
49

  Define the group M as the musical 

transposition and inversion group (T/I group) acting on B. We have now defined an isomorphism 

that describes familiar musical operations as a group, M ≅ D6.  

Definition 10. The Neo-Riemannian Group 

 Neo-Riemannian theory frequently incorporates thee distinct operations, Parallel (P), 

Relative (R), and Leading-tone exchange (Leitonwechel) (L).  

Parallel (P) =  (   
  
→       

  
→   ), (C

∆
    C 

−
); 

Relative (R) =  (   
  
→        

  
→   ), (C

∆
   A

−
); 

Leading tone exchange (L) = (   
  
→        

  
→   ), (C

∆
   E

−
). 

These elements may be combined to form products of group actions,  

PR = (   
 
→        

 
→  

 ), (C
∆
 → E

∆
). 

RLR = (   
 
→        

 
→        

 
→   ), (C

∆
 → D 

−
). 

RPL = (   
 
→       

 
→       

 
→  

 ), (C
∆
 → C

−
). 

The neo-Riemannian group and the T/I group are isomorphic to each other and to D24.
50

  

1.4. Non-Traditional Triad Usage in a Historical Context 

In this section, we investigate non-traditional triadic usage within a specific historical 

context, and look at various ways triads appear as part of an improvised melodic line. Excerpts 

from Charlie Parker’s improvisations serve as examples to support other authors’ claims that 

non-traditional triadic usage extends well into the bebop era.  

                                                
49 We hold to the notation where n = the dihedral group’s order. Some mathematical texts list the dihedral group 

where n = number of set elements on which that it acts. 
50 See, Alissa S. Crans, Thomas M. Fiore, and Ramon Satyendra, “Musical Actions of Dihedral Groups,” The 

American Mathematical Monthly 116, no.6 (2009): 479-495. 
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 Paul Berliner states that jazz musicians of the 1920s had already begun the development 

of triadic superimposition through “diatonic upper extensions [tensions] and altered tones of 

chords.” Bassist/composer Rufus Reid describes saxophonist Eddie Harris’s use of this 

technique. “Some [players] conceived of pitch selections as chords superimposed one upon the 

other—two triads or the polychord type of things…he [Harris] could think real fast that way and 

superimpose different kinds of harmonic things on the chord because the materials of triads were 

already second nature and readily at hand.”
51

 Mark Levine cites Bud Powell as an example of a 

bebop musician who employed triadic material in the form of slash chords (triad over a bass 

note) citing as an example Powell’s “Glass Enclosure,” from the 1953 Blue Note release, The 

Amazing Bud Powell, Volume 2.
52

 These accounts support a hypothesis that by the bebop era, a 

shift toward an increasingly complex musical vocabulary had occurred: one in which included an 

alternative system of pitch organization that incorporated the superimposition of triads foreign to 

the composition’s stated harmony.   

Charlie Parker said that while playing Ray Noble’s tune “Cherokee,” “I found that by 

using the higher intervals of a chord as a melody line and backing them with appropriately 

related changes, I could play the thing I'd been hearing.”
53 

In the following excerpts from Charlie 

Parker’s solos, we encounter four types of triadic applications, all of which may be considered in 

terms of melodic superimpositions over stated harmony: (1) relative II
−
 over a dominant seventh 

chord;
54

 (2) superimpositions based on neo-Riemannian transformations; (3) auxiliary 

                                                
51 Paul F. Berliner, Thinking in Jazz: The Infinite Art of Improvisation (Chicago: The University of Chicago Press, 

1994), 160. 
52 Mark Levine, Jazz Theory (Petaluma, CA: Sher Music Company, 1995), 110.  
53 Nat Shapiro and Nat Hentoff, Hear Me Talkin' To Ya (Mineola, NY: Dover, 1955), 354. 
54 Here the term relative II− does not hold the meaning of a relative minor, but as the subdominant member of a 

II−—V complex. For example, the relative II
−
of  F

7
 is a C

−
, the relative II

−
 of A

7
 is E

−
. The II

−
—V is ubiquitous to 

jazz harmony. Musicians often base chord/scale determinations around a single II−—V element and apply that single 

chord/scale choice over both chords, especially when dealing with fast tempos. 

http://en.wikipedia.org/wiki/Charlie_Parker
http://en.wikipedia.org/wiki/Ray_Noble_(musician)
http://en.wikipedia.org/wiki/Cherokee_(Ray_Noble_song)
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superimpositions; and (4) triad chains. In the following examples, stated harmony is positioned 

above the staff; identification of the superimposed triad is below the staff.
 55

    

Example 1.1. “Blue Bird,” relative II− over a dominant seventh chord
56

 

 
Example 1.2. “Card Board,” II

−
—V complex: relative (R) over subdominant harmony, 

(   
 
    )

57
 

 

Example 1.3. “Kim” (no.1), II
−
—V complex: relative (R) over subdominant harmony,    

 
   

 
; parallel (P) over dominant harmony (   

 
    )

58
 

 
 

 

 

 

 

 

 

 

                                                
55 Jamey Aebersold, and Ken Sloan, Charlie Parker Omnibook  (New York: Music People, 1978).  Notational use of 

min for minor in these examples adheres to source nomenclature.     
56

 Aebersold and Sloan, 84, mm. 14-5. 
57 Aebersold and Sloan, 94, mm. 29-31. 
58 Aebersold and Sloan, 53, mm. 88-9. 

  

  

E

∆
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Example 1.4. “Kim” (no.1), parallel (P), ( 
  

 
   

 
) 

59
 

 

 

Example 1.5. “Another Hairdo,” leading tone exchange (L), ( 
  

 
    )

60
 

 

 The following examples of auxiliary superimpositions contain triads that provide greater 

upper-structure dissonance due to their distant tonal relationship, generating harmonic tensions.  

Example 1.6. “Diverse,” II
−
—V complex: II

Δ 
over dominant harmony

61

 

Example 1.7. “The Bird,” II
−
—V complex: II

−
 over dominant harmony

62
 

 

 

                                                
59 Aebersold and Sloan, 53, mm. 44-5. The above example could read as C− → C

∆, the Riemannian Slide (S) 

transformation where the two triads share a common third. 

60
 Aebersold and Sloan, 105, mm. 54-5. 

61 Aebersold and Sloan, 114, mm. 25-8.  
62 Aebersold and Sloan, 111, mm. 35-7. 
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Example 1.8. “Bird Gets the Worm,” II
−
 over a major seventh chord

63
 

 

Example 1.9. “Vista,” III
Δ
 over a dominant seventh chord

64
  

 

Example 1.10. “Warming up a Riff,” II
−
—V complex: VI

Δ
 over dominant harmony

65
 

 

Example 1.11. “Another Hairdo,” II
−
—V complex: VII

Δ
 over dominant harmony

66
                     

  

 

 

 

 

 

                                                
63 Aebersold and Sloan, 94, mm.13-5. 
64

 Aebersold and Sloan, 100, mm. 6-7. 
65 Aebersold and Sloan, 136,  mm.19-21. 
66 Aebersold and Sloan, 105, m. 60. 
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  Example 1.12. “Klaun Stance,” VII
−
 over a major seventh chord

67
     

 

 Triad chains consist of two or more triads in succession. In the following three examples, 

their orbits are of order > 2.  

Example 1.13.“Mohawk” (no.1), triad chain (C
−
, E

−
, B

∆
)
68

 

 
Parker unfolds a C blues scale with an added ninth: C

−
 = {C,E,G}; E

−
 = {E,G,B};  

B
∆
 = {B,D,F}, where C

−
 ∪ E

− ∪ B
∆
 = {C,D,E,F,G,G,B}. Let C =  ̂. Therefore, the pitch 

content expressed as scale degrees equals ( ̂,  ̂,  ̂,  ̂,  ̂,  ̂,  ̂). 

Example 1.14. “Ah-Leu-Cha,” triad chain (C
∆
, B

∆
, A

−
, G

−
)
69

 

 
Triadic material in this example consists of diatonic chords obtained from the (1) diatonic; 

triadic root motions unfold a descending diatonic step-wise progression. The melodic gesture is 

constructed from root-position triads and a prefix incomplete lower neighbor to the triad’s root.  

 

                                                
67

 Aebersold and Sloan, 90, mm. 41-2.  
68 Aebersold and Sloan, 38, mm.13-5. 
69 Aebersold and Sloan, 88, mm. 65-7. 
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Example 1.15. “Bloomdido,” triad chain (G
−
, C

−
, G

∆
, G

−
)
70

 

 
G

−
 acts as a minor-inflected dominant to C

−
. C

−
 attempts to move to its T6 image. The G

∆
 

intercalation, through P, immediately corrects its parity to (G
−
).    

The next two examples feature triad chains that contain orbits of order 2.  

Example 1.16. “The Bird,” triad chain containing a triad pair, ((C
−
, D

−
), A

−
)

71
 

 
 

Example 1.17. “Bird Gets the Worm,” triad pair, (F
−
, B

−
)
72

 

 
A functional reading of the above two examples is quite rudimentary. D

−
 in Example 1.16 

acts as a complete upper neighbor to the stated C
−
. In Example 1.17, B

−
  is a minor inflected 

subdominant, acting as a harmonic anticipation of the stated harmony in the second measure.  

A permutational reading of the last two examples identifies the triad pairs as group actions, with 

orbits of order 2, (C
−
, D

−
) and (F

−
, B

−
).   

 

 

                                                
70

 Aebersold and Sloan, 109, mm. 39-41. 
71 Aebersold and Sloan, 111, mm.55-7.  
72 Aebersold and Sloan, 95, mm. 33-5. 
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Definition 11. Involution  

 An involution is an operation of order 2, regardless of the number of elements of a set 

that it permutes, shown with the mapping 

 ( ( ))   , f 
2 
(x) = x, 

written cyclically as (x, y). 

 The set of neo-Riemannian transformations P, L, and R contains three involutions. 

Written as actions on C
∆
, we have the following: {(   

 
    ) (   

 
    ) (   

 
    ) . The 

twelve inversion operations (In) described in set theory also form a set of involutions. In 

mathematics, a transposition (or 2-cycle) is an exchange of (only) two elements in a set. Because 

of the potential confusion of the mathematical term transposition and the musical term of the 

same name (which mathematicians would call translation), we will adopt the term “exchange” 

for all mathematical transpositions.
73

 We say the group member (C
−
, D

−
) is an exchange 

generated by some action f on a set containing C
−
 and D

−
. 

 

 

 

 

 

 

 

 

 

 

                                                
73 See, Hook, 97. 
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CHAPTER 2.  SET DEFINITION 

2.1. Introduction 

This section contains an overview of established jazz harmonic theory, chord/scale 

relationships and improvisational methods, which are rooted in functional harmonic practices, 

and which ultimately serve as criteria for set definition. While the central argument of the 

Permutational Triadic Approach pertains to the relationships between consonant triads generated 

by permutation groups, this does not mean that the permutations exist within a tonal vacuum. 

This speculative theory respects the functional underpinnings of tonal theory, and expands upon 

accepted theoretical practice. Therefore, functional harmony, to the degree to which it informs 

the chord/scale relationship, is the basis for set definition. 

     There exist numerous accepted approaches to chord/scale determination. One widely 

employed chord/scale method, attributed to David Baker, and published by Jamey Aebersold, 

considers chord quality paramount in determining a scale choice.
74

 However, if one considers 

chord quality as the only criterion for chord/scale determination, Mehrdeutigkeit (multiple 

meaning), an important aspect of functional harmony in general, remains unaddressed. Brian 

Hyer addresses this concept in his discussion on the use of Roman numerals as an analytical 

tool:
75

 

 

                                                
74 Aebersold, Jazz Handbook, 14. 
75

 Mehrdeutigkeit is a term first used to explain the “multiple meaning” of musical objects and was first used to 

describe nineteenth-century music. The term is attributed to theorist Gottfried Weber. See, Gottfried Weber, Versuch 

einer geordneten Theorie der Tonsetzkunst, 3rd ed. (Mainz: B. Schott, 1830-2); Janna K. Saslaw, “Gottfried Weber’s 

Cognitive Theory of Harmonic Progression,” Studies in Music from the University of Western Ontario 13 (1991): 

121-44; “Gottfried Weber and Multiple Meaning,” Theoria 5 (1990-1): 74-103; “Gottfried Weber and the Concept 

of Mehrdeutigkeit” (PhD. diss., Columbia University, 1992); David Carson Berry, “The Meaning of “Without”: An 

Exploration of Liszt’s Bagatelle ohne Tonart,” 19th-Century Music 29, no.3 (2004): 230-62. 
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 A recurring source of vexation in scale-degree theories is Mehrdeutigkeit , or 

multiple meaning: because harmonies assume roman numerals on the basis of 

pitch-class content rather than musical behavior (as in function theories), there are 

no hard and fast criteria to determine which major or minor scale a particular 

harmonic configuration refers to: a C major triad, for instance, can be heard as I in 

C major, IV in G major, V in F major, or VI in E minor; one must take contextual 

factors into account in order to narrow down the possibilities to a single roman 

numeral.
76

 

 

In order to address Mehrdeutigkeit, we use a system of chord/scale determination that 

takes into account the chord’s function as well as its quality.
77

 For the present discussion, 

functional harmony is divided into five subcategories: diatonic harmony; dominant 

action; modal harmony, including modal interchange (modal mixture); and tonic systems.  

2.2. Diatonic Harmony 

Functional diatonic harmony in jazz is well described by Hugo Riemann’s three 

functional classes: tonic, subdominant, and dominant. Riemann calls these classes “primary 

pillars of harmonic progression,”
78

 describing I, IV, V as primary tonic, primary subdominant 

and primary dominant chords respectively. The remaining chords function as secondary 

harmonies (not to be confused with secondary dominants) belonging to a class associated with a 

primary chord: tonic {I
∆
, VI

−
, III

−
}; subdominant {IV

∆
, II

−
, in some cases VI

−
}; and dominant 

{V
∆
, VII

o 
, in some cases III

−
).

79
  Jazz harmonic theory retains many of these Riemannian 

                                                
76 Brian Hyer, “Tonality,” in The Cambridge History of Western Music Theory, ed. Thomas Christensen 

(Cambridge: Cambridge University Press, 2002), 726-52.  
77 See Barrie Nettles and Richard Graf, The Chord Scale Theory and Jazz Harmony (Rottenberg: Advance Music, 

1997). 

78 William C. Mickelsen, trans. and ed., Hugo Riemann’s Theory of Harmony: A Study by William C. Mickelsen and 

History of Music Theory, Book III by Hugo Riemann (Lincoln: University of Nebraska Press, 1977), 28-9. See also, 

Hugo Riemann, Handbuch der Harmonielehre, 9th ed. (Liepzig: Breitkoph und Härtel, 1921), 215.  
79 Hugo Riemann, Präludien und Studien, vol.3, (Leipzig, 1901), 4. 
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concepts; differences are the omission of VI
–7

 from the subdominant class, and the omission of 

III
−7 

and VII
−75 from the dominant class.

80
  

2.3. Modal Harmony 

Modal theory describes the cyclic reordering of the pitch classes of a nonsymmetrical 

scale and the assignment of a new tonic, isomorphic to the set of permutations generated by 

rotational symmetry. The cyclic group of degree 7, C7, has an action on the diatonic collection’s 

seven pitches as an ordered set in register. The seven elements may represent diatonic pitches, 

triads or seventh chords. 

Definition 12. Cyclic group  

A group G is cyclic if there exists an element r in G that holds to the group presentation,
81

 

   {   |     ℤ        

Element r is called the generator of G, written   〈 〉. The set of integers ℤn under addition mod 

n is cyclic; cyclic groups are the only groups that can be generated by a single element. 

       ⏟        
| |        

 .
82

 

If G := {r
i
,r

1
,r

2
,r

3
,r

4
} and G is a group, then r

5
 = r

i
, G is cyclic, isomorphic to the set of integers 

{0,1,2,3,4} under addition modulo 5: r
1  r2

 = r
3
; r

2
   r4

 = r
6
 = r

1
. For every positive integer n, 

there exists one cyclic group of order n, describing n-fold rotational symmetry.
83

 Cyclic groups 

                                                
80  In jazz functional harmony, VII−75 is rarely considered a dominant alias; it is most often a relative II− of V7/VI−.   
81 The group presentation reads as follows, the first set of entries is the group generators, followed by | (meaning 
“such that”), and concluding with necessary and sufficient relations on the generators to define the group. In this 

case, G is the group generated by r, such that, r3 returns the group identity element, i. 
82

 Adapted from Gallian, 73-4. 
83 We have seen previous examples of cyclic groups. Figure 2, showing the full symmetry group of the triangle, 

contains C3, the rotations on the triangle as a subgroup.  
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are the simplest of groups and are often the building blocks of more complex groups.
84

 Define 

the set D(∅) := {1=C, 2=D, 3=E, 4=F, 5=G, 6=A, 7=B},
85

 and let J := (D(∅), C7) be a group.  

Example 2.1. Diatonic modes modeled as C7                                                            

       
(       )  

         

            

        

          

        (

 
 
 
 

       
       
       
       
       
       
       

    

)

 
 
 
 

 

 

Example 2.2. C7 in cyclic notation 

       
       

          

        

            

         

         

( )( )( )( )( )( )( )  ( )( )( )( )( )( )( )
(       )  (       )
(       )  (       )
(       )  (       )
(       )  (       )
(       )  (       )
(       )  (       )

     

In the example, Ionian represents the diatonic triads as the identity element.
86

  To identify 

a specific mode, one locates the permutation in which the modal scale degree maps to 1, creating 

a new tonic. For example, Dorian is generated when the Ionian’s  ̂ becomes the new  ̂ (tonic). 

The reading for Dorian in cyclic notation is as follows: 2 maps to the place previously held by 1; 

1 maps to the place previously held by 7, 7 maps to the place previously held by 6, and so on.                                                                         

                                                
84 For a detailed study of scales defined as cyclic groups see Paul F. Zweifel, “Generalized Diatonic and Pentatonic 

Scales: A Group-Theoretic Approach,” Perspectives of New Music 34, no.1 (1996): 140-161. 
85

 A complete description of the twelve diatonic collections in chromatic space requires twelve copies of J.   
86 This follows the musical practice of relating modes back to the parent Ionian as a baseline to model scale degrees; 

e.g. Dorian contains scale degrees 3 and 7 by comparison to its parallel Ionian.    
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To identify a specific modal permutation, locate the orbit where the modal-tonic maps to 

1. Integer presentation in cyclic notation traditionally situates the smallest-value integer in the 

orbit’s first position. For musical relevancy, however, the elementwise orderings in Example 2.2 

place the modal tonic scale degree in the left-most entry. Diatonic modes not only share 

equivalent pitch class content, they are isomorphic under the group action (D(n), C7).  

The aural phenomenon created by modes relies upon this pitch content reordering; how 

musicians realize the reordering harmonically varies. Ron Miller uses the location of half-steps 

within the parent collection as the definitive criteria. This technique is quite useful when dealing 

with non-tertian collections. The method used in this document adheres to the following steps: 

(1) Tonic is represented by a new scale degree. (2) Scale degree  ̂ above the new tonic acts as a 

mode quality identifier (any diatonic mode is some version of either major or minor). (3) 

Characteristic pitches are scale-degree inflections unique to a particular mode: ( ̂) Dorian, ( ̂) 

Phrygian, ( ̂) Lydian, ( ̂) Mixolydian, and ( ̂) Aeolian. 

 Modal harmonic theory utilizes four functional classes: tonic (T), characteristic (C), 

avoid (A), and passing (P). Tonic chords are as defined; they represent the modal tonic. 

Characteristic chords contain characteristic scale degrees, thereby conveying the mode’s 

sonority. Due to an internal tritone, avoid chords tend to destroy the sound of the mode by 

implying an expected resolution to the parent Ionian rather than the modal tonic; however, there 

are instances where the triadic form of an avoid chord is allowed as a characteristic chord, as is 

the case of II
∆
 (II

7
) in Lydian. Passing chords act as connective harmonies.

87
 

To model modal harmony as Cn, simply replace pitch/integer correspondences with 

Roman numeral/integer correspondences. Retaining the 0/0 diatonic assumption, define the set 

                                                
87

 The source of this method is an unpublished document acquired by the author at Berklee College of Music in 

1987. This was a handout provided to the Advanced Modal Harmony Class by instructor Steve Rochinski. See also, 

Nettles and Graff, 128-35.  
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K := {1 = C
∆7

, 2 = D
−7

, 3 = E
−7

, 4 = F
∆7

, 5 = G
7
, 6 = A

−7
, 7 = B

−75}, and the group H := (K(∅) ,C7). 

Geometrically, a regular n-gon with n elements (which could be the sides, edges, or vertices) 

models n-fold rotational symmetry, Cn.
88

 Since the diatonic collection, with its seven elements, is 

presently the topic of discussion, we use a regular septagon as the modeling agent. Figures 3 and 

4 contain geometric representations of 0/0 Ionian (i) and 0/0 Dorian (r).  

 

 

Figure 3. Ionian as (D(∅), C7): i  

                                                
88 Points plotted upon a circle are not acceptable as circle group elements are uncountable (the circle has no vertices) 

and cyclic group elements must be countable. 
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C∆7 

II−7 

D−7 

IVΔ7 

FΔ7 
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G7 

VI−7 

A−7 

VII−75 

B−75 

III−7 

E−7 

5 

7 

1 

2 

6 

4 

3 

                     Ionian 

                  (D(∅), C7): i                                  

            (1)(2)(3)(4)(5)(6)(7) 
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Figure 4. Dorian as (D(∅), C7): r 

 

Appendix A displays harmonic analyses for the remaining diatonic modes.
89

  

All chords from the parallel Aeolian and any characteristic chord from the remaining 

parallel modes qualify as modal interchange harmonies; therefore, in the key of C major, the set 

of all available modal interchange chords is defined as all chords from C Aeolian and the 

characteristic chords from C Dorian, C Phrygian, C Lydian, and C Mixolydian. Example 3 lists 

all available modal interchange chords as a modal interchange array. Aeolian-derived chords 

provide modal inflections to the Ionian key areas: tonic = I
−7

, III
∆7

, dominant = V
−7

, VII
7
.  

Subdominant key area modal interchange chords form a distinct harmonic class called 

                                                
89 Locrian is excluded due to the instability of its tonic chord. In jazz, VII−75 functions primarily as a passing chord 

between VI− and I∆ or as the relative II−75 to either V7/VI− or subV7/VI−.  

T 

I−7 

D−7 

C 

II−7 

E−7 

P 

IIIΔ7 

FΔ7 

C 

IV7 

G7 

P 

V−7 

A−7 

A 

VI−75 

B−75 

C 

VIIΔ7 

CΔ7 

4 

    Dorian 

(D(∅), C7): r 

  (2176543) 

1 

6 

2 

5 

3 

7 

r 
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subdominant minor, which includes II
−75, IV

−
 (including IV

−7
 and IV

−6
 variants), VI

∆7
, and 

II
∆7

.  

Example 3. Modal interchange array 

 

Analysis 1. “Lady Bird”  

Modal interchange can operate on multiple harmonic levels simultaneously within a 

single composition, as in Tadd Dameron’s “Lady Bird.”  

 

 

 

 

 

IΔ 

GenericTonic  
(Major Key) 

I−7 

Aeolian 

 

IIΔ7 

Phrygia
n II7 

Lydian 

(triad) 

II−7 

Dorian 

II−75 

Aeolian 

IIIΔ7 

Aeolian 

IV7 

Dorian 

(triad) IV−7 

Aeolian 

VΔ7 

Lydian 

V−7 

Mixolydian 

Aeolian 

VIΔ7 

Aeolian 

 

VIIΔ7 

Dorian 

Mixolydian 

 

VII7 

Mixolydian 

Aeolian  

VII−7 

Phrygian 

VII−7 

Lydian 
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Example 4. “Lady Bird,” graphic analysis 

 

In “Lady Bird,” modal interchange informs a large-scale structural arrival of VI
∆7

 in m.9, 

and a local harmonic event, the turnaround, which propels the music back to the top of the form. 

The turnaround features three modally inflected chords taken from two modes, III
∆7 

[Aeolian], 

VI
∆7

 [Aeolian], and II
∆7

 [Phrygian].  

Generation of modal elements though rotational permutation also applies to scale 

collections other than the diatonic, including, what is termed here, synthetic scales.
90

 The 

synthetic scales included in this study include: real melodic minor, real melodic minor 5, 

harmonic minor, harmonic major, double harmonic { ̂  ̂  ̂  ̂  ̂  ̂  ̂} and double harmonic 5 

{ ̂  ̂  ̂  ̂  ̂  ̂  ̂}.
91

 The difference in the musical usage of the diatonic modes versus synthetic 

modes is that synthetic scales generally do not form a composition’s harmonic foundation. 

Modes from synthetic scales do, however, act as local reharmonizations, generate modal 

interchange chords within a diatonic harmonic progression, and generate chord/scale 

possibilities. In the following analysis, inclusions of modally derived harmonies from synthetic 

scales define the composition’s harmonic areas.  

 

                                                
90 Ron Miller calls these collections “altered diatonic scales.” See Miller, 31-35, 89-93, 115-18. 
91 A musical representations of these scales are presented in Table 3, the Scale Roster. 
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Analysis 2. “The Beatles”  

John Scofield’s “The Beatles” exhibits how diatonic, hexatonic, and real melodic minor 

harmonic sonorities can intermingle within a single composition. As a preliminary to the 

analysis, Example 5 lists the modal representations of the real melodic minor. Modal 

representations of the remaining synthetic scales used in this study are in Appendix A.2. 

Appendix B.1 contains an annotated lead sheet for “The Beatles.” Example 6 contains a graphic 

analysis.  

Example 5. Modal representation of the real melodic minor 

 
 

 

 

 

I−Δ7 

Real Melodic 
Minor 

II−7 9 

Dorian 2 

also  

Dominant 7sus ,9 

IIIΔ75 

Lydian 5 

IV711 

Lydian 7 

V7 9, 13 

Mixolydian 6 

VI−75 9 

Locrian 2 

VII−75 

Diminished Whole 
Tone, Altered 
Scale, Super 

Locrian 
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Example 6. “The Beatles,” graphic analysis 

 
 

The analysis addresses each scale genre separately and describes its role within the 

composition. 

 (1) Diatonic: A four-sharp diatonic, E major, is the prevailing tonal center where the tonic (E
∆
) 

makes an arduous journey to attain the subdominant (A
∆
); this tonic-to-subdominant motion 

forms the harmonic background. Measures 5-6 introduce the tonic sonority, with an initial tonic 

arrival in m. 6, followed by an unresolved (at least in the immediate sense) V
7
/II

− 
 (C

7 sus
) in 

m.7. Measures 12-13 unfold subdominant harmonies, one of which includes an internal 

chromatic line that involves the subdominant alias II
−
 
 
and its modal interchange counterpart 

II
−75 over a tonic pedal. Measure 15 ushers in the binary form’s second section through the 

restatement of II
−7

, followed by the subdominant-minor chord VI
∆7

,  moving to a B
∆7

 that 

functions as an upper neighbor to a modally inflected IV
∆75 

(A
∆75). Measures 19-22 contain a 

second attempt to attain the true subdominant, where the arrival of A
∆75 provides the correct 

pitch level. However, modally inflected chord quality thwarts true subdominant attainment. 

Measures 23-26 start with a false recapitulation of the second section, making a third and final 

attempt for IV
∆
. The harmonic background closes in m. 26, with the long awaited arrival of IV

∆
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(A
∆
) in its simple triadic form. The final four measures act as a turnaround on B

7
 
sus9

, which is 

an altered form of V
7
/E

∆
. 

(2) Hexatonic: The opening chord, C
∆75, attempts to be two things at once, the initial statement 

of tonic (the tonic triad is the upper-structure triad) and an altered form of a VI
∆7

, a 

subdominant-minor chord. Nevertheless, aurally, it is an off-tonic opening affected by a double 

modal interchange chord. A double modal interchange chord derives it’s root from a parallel 

mode and a differing scale genus provides the quality. For an example, let us assume the key of 

E major and consider a chord built on VI. E Aeolian provides the root (C), and to continue 

deriving the modal interchange quality from Aeolian, we would say, VI
∆7

. However, to include 

an additional modal interchange component, choose the modal interchange chord’s quality from 

a differing scale genre. Major seventh 5 is a chordal quality available in real melodic minor (it is 

the third mode). To conjoin the major seventh 5 quality (from real melodic minor) with VI root 

presentation (from Aeolian), we generate C
∆75,  a double modal interchange chord in the key of 

E major.  

Major seventh 5 chords appear three times within the composition, where each 

subsequent presentation lays T3 above the previous presentation (see m.9 (E
∆75)) and mm. 21-22 

(A
∆75)), the latter being the problematic subdominant resolution. These chords also try to be two 

things at once in terms of their parent scale genus. One reading describes them as a modal variant 

of the real melodic minor, taking into account the brief utterance of the pitch A in the bass line of 

m. 2.  C
∆75, the chord in m.2, can derive from the third mode of the real melodic minor built in 

the pitch A; however, the hexatonic also generates major seventh 5. The descending 

arpeggiation (B,G,E,C,A,G,E,C), in the third the major seventh sharp five occurrence, A
∆75, 

in mm. 21-22, when taken in its entirety, unfolds a subset of the real melodic minor built on F. 
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Realize the initial pitch, B, in m.21 as a harmonic tension (9
th
) over the A

∆75 (it does not return 

as the arpeggiation continues in m.22), thus removing it from the descending arpeggiation 

proper. The set of pitches {G,E,C,A,G,E,C} remain, opening the possibility of reading the 

descending arpeggiation as a Hex(0,1) subset. Given that the major seventh 5 chords move 

according to a symmetrical transpositional level, (T3), a reading that ties additional symmetrical 

structures into the analysis supports a more general hypothesis that symmetric structures bolster 

other symmetric structures.   

The hexatonic reading considers three unique hexatonic collections to be at play:  

C
∆75   Hex(3,4);  E

∆75   Hex(2,3); and A
∆75   Hex(0,1). It is worth pointing out an interesting 

property. The chords ascend in chromatic-space, C
∆75  

  
→ E

∆75 
  
→ A

∆75 and simultaneously 

descend in hexatonic space, Hex(3,4) → Hex(2,3) → Hex(0,1).  

(3) Real melodic minor: The analytical decision to include C
∆75, E

∆75, and A
∆75 as  hexatonic 

subsets isolates them from the turn-around harmony, B
7sus,9, a typical real melodic minor chord. 

As such, the final sonority, B
7sus,9, clearly conveys the second mode of the real melodic minor 

and is not related to the hexatonic chords through a generative parent scale. B
7sus,9 

 functions as 

an altered V
7
 of E

∆
. Note that the final sonority could present as an upper-structure triad over a 

bass note, A
−
/B, where a modally inflected IV

−
 chord resides in the upper-structure, further 

substantiating the importance of the subdominant and modal interchange in the composition.      

The following discussion applies modal interchange theory as a component of set 

definition. For illustration, consider the progression II
−7

—V
7
—I

∆7
 in the key of C major  

(D
−7

—G
7
—C

∆7
). Referring back to the musical domains mentioned in the introduction, there are 

two possible approaches to determining a chord/scales for this progression. First, since all the 

harmonies derive from the 0/0 diatonic, one could choose to play C Ionian scale over all three 
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chords—thus defining the musical domain as C Ionian—and pull consonant triads from that 

collection to define the set. Alternatively, the musician could choose to address each chord 

separately, and apply D Dorian over D
−7

, G Mixolydian over G
7
, and C Ionian over C

∆7
. 

Although we have not left the realm of C Ionian in the latter approach, there are three scales to 

manipulate. 

 The inclusion of modal interchange adds variety and a more complex soundscape. 

Example 7 contains a reconsideration of the II—V—I progression using modal interchange and 

double modal interchange. The chord scale choices are listed in two forms to clearly show the 

scale genre from which the scale is derived: common tone, where the pitch level of the scale 

remains invariant, and parallel, where the name of the chord/scale agrees with the harmonic 

presentation.
92

 In Example 7.1, D
∆7

, a characteristic chord from C Phrygian, acts as a passing 

chord between the subdominant and tonic members, replacing the G
7
. With this replacement, an 

additional scale, C Phrygian, allows set determination to derive from (0/0) and (4) diatonic 

collections.  

 

 

 

 

 

 

 

 

                                                
92 See, Mick Goodrick, The Advancing Guitarist (Milwaukee: Hal Leonard, 1987), 62-7. 
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Example 7.1. Modal interchange as set determinant, II—V—I   

Analysis II
−7

 V
7
 I

∆7
 

Stated Harmony D
−7

 G
7
 C

∆7
 

Chord/Scale: Common tone C Ionian C Ionian C Ionian 

Chord/Scale: Parallel D Dorian G Mixolydian C Ionian 

Analysis II
−7

 II
∆7

 I
∆7

 

Reharmonization D
−7

 D
∆7

 C
∆7

 

Chord/Scale: Common tone C Ionian C Phrygian C Ionian 

Chord/Scale: Parallel D Dorian D Lydian C Ionian 

 

Example 7.2. Modal Interchange as set determinant, I—III—VI         

Analysis I
∆7

 III
−7

 VI
−7

 

Stated Harmony C
∆7

 E
−7

 A
−7

 

Chord/Scale: Common tone C Ionian C Ionian C Ionian 

Chord/Scale: Parallel C Ionian E Phrygian A Aeolian 

Analysis I
∆7

 VII
∆7

 VI
−7

 

Reharmonization C
∆7

 B
∆7

 A
−7

 

Chord/Scale: Common tone C Ionian C Mixolydian C Ionian 

Chord/Scale: Parallel C Ionian B Lydian A Aeolian 

 

In Example 7.2, B
∆7

, a characteristic chord from C Mixolydian, acts as passing chord between 

the true tonic and a tonic alias and replaces the tonic alias III
−7

, breaking up the saturation of 

three consecutive tonic harmonies.  
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 The next example uses a II
−7

—V
7
—I

∆7
 progression in D major as it is found in Kenny 

Dorham’s composition “Blue Bossa.” The composition is in key of C minor and the harmonic 

content consists of a II—V—I progression in the home key followed by the II—V—I that 

tonicizes II
∆
 (D

∆
). It then returns to a II—V—I in the home key.  

Example 7.3.Synthetic scale modal interchange as set determinant  

Analysis II
−7

 V
7
 I

∆7
 

Stated Harmony E
−7

 A
7
 D

∆7
 

Chord/Scale: Common tone D Ionian D Ionian D Ionian 

Chord/Scale: Parallel E Dorian A Mixolydian D Ionian 

Analysis II
−7

 V
7
 I

∆75
 

Reharmonization E
−7

 A
7
 D

∆75
 

Chord/Scale: Common tone D Ionian D Ionian B real melodic minor 

Chord/Scale: Parallel E Dorian A Mixolydian D Lydian Augmented 

 

The melodic minor provides for a scale genus other than diatonic, a quality missing in the 

previous examples. In addition, the opening C
−
 takes Aeolian as a first-choice chord/scale but C 

Dorian is also a viable possibility. The introduction of the pitch A is facilitated by D
∆75 

foreshadows the A contained in C Dorian if indeed the musician desires to incorporate Dorian-

inflected material. 

 The final example in this section draws upon certain aspects from the discussion of the 

Scofield analysis: double modal interchange and the use of multiple scale genres within a single 

musical event. 
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Example 7.4. Double modal interchange as set determinant      

Analysis I
∆7

 VI
−7

 V
7
 I

∆7
 

Stated Harmony C
∆7

 A
−7

 G
7
 C

∆7
 

Chord/Scale: Common tone C Ionian C Ionian C Ionian C Ionian 

Chord/Scale: Parallel C Ionian A Aeolian G Mixolydian C Ionian 

Analysis I
∆7

 [ ] V
7
 
sus9

 I
−∆7

 

Reharmonization C
∆7

 A
−75 9

 G
7 sus9

 C
−∆7

 

Chord/Scale: Common tone C Ionian C real melodic minor F real melodic minor Hex(3,4) 

Chord/Scale: Parallel C Ionian A Locrian 2 G Dorian 2 Hex(3,4) 

 

A
−75 9 

takes its root from C Aeolian and its quality from a differing scale genre. It is an example 

of double modal interchange. Keeping with the real melodic minor scale genre, the dominant 

chord is expressed as a sus chord with an altered 9
th
, a sonority previously observed in “The 

Beatles,” and a chord commonly employed to impose the real melodic minor sound over a 

dominant functioning harmony. The final chord, C
−∆7

, is inversionally related to a C
∆75 at I11: the 

hexatonic scale applies to both ∆75, and to −∆7. We now have thee unique scale genres from 

which to define sets.    

 Diatonic and modal interchange chords can stand alone or be embellished with dominant 

action chords. In the latter case, diatonic and modal interchange chords sometimes act as target 

chords, the object of resolution for dominant action chords. The distinction between dominant 

action and target chords is crucial to understanding how jazz harmony works. Each category may 
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take vastly different chord/scales. This is especially when the dominant action chord is altered, 

which it often is.   

2.4. Dominant Action 

 Dominant action chords come in two common forms, the true dominant and the substitute 

dominant. The true dominant is a dominant seventh chord (less often a major triad) whose root 

lays perfect fifth above the target chord. The substitute dominant, shown as  
sub

V
7
/X, is a 

dominant seventh chord (less often a major triad) whose root lays a half-step above the target 

chord X.
93

 For any diatonic collection, there exists a single primary dominant (V
7
), five unique 

secondary dominants {V
7
/II

−7
, V

7
/III

−7
, V

7
/IV

Δ7
, V

7
/V

7
, V

7
/VI

−7
}, and six unique 

sub
V

7
/X 

harmonies {
sub

V
7
/I

Δ7
, 

sub
V7/ II

−7
, 

sub
V

7
/III

−7
, 

sub
V

7
/IV

Δ7
, 

sub
V

7
/V

7
, 

sub
V

7
/VI

−7
}.  

The II—V complex generalization holds that any dominant action chord may be preceded 

by its relative II
−
 (or II

−75), thus forming a II—V complex, and creating four possible dominant-

action pathways to any target chord, shown in Example 8. In the following examples, target 

chords take the analytical expression I
x
 where variable x represents any chord quality other than 

minor seventh flat five, or fully diminished seventh. The choice of G as the tonic root is an 

arbitrary choice for illustrative purposes only. Some relative II
− 

 harmonies hold dual functions, 

as (1) diatonic or modal interchange chords and as (2) the relative II
−
 chord to their dominant 

partners. B
−7

 in the key of G major is an example. B
−7

 functions as both III
−7

 and the relative II
−7

 

of V
7
/II

−
. We use the notation of empty brackets, [ ], to represent relative II

−
 chords 

irreconcilable as diatonic or modal interchange chords, functioning only as the subdominant 

partner to the corresponding dominant action chord.  

                                                
93

 See, Nicole Biamonte, “Augmented-Sixth Chords vs. Tritone Substitutes.” Music Theory Online 14, no.2 (2008), 

for further work on this relationship where the replacement of the cycle-five root motion with a descending minor 

second equates with Robert Morris’s TTO transformation T6MI (T6M7). 
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Example 8.1. II—V complex derivation 

Subdominant Dominant Target Chord 

 

II
−7

 

 

V
7
 

 

 

I
x
 

A
−7

 D
7
  

  G
x
 

 

[ ] 

 

 
sub

V
7
/I

x
 

 

I
x
 

   E
−7

                      A
7
  

 

Example 8.2. II—V possibilities with a single target chord 

1. 

II
−7 

| 

 

V
7 

| 

 

I
x 

 

 

A
−7 

 

D
7 

 

G
x 

 

2. 

[ ] 

| 

 

sub
V

7
/I

x 

| 

 

I
x 

 

 

E
−7 

 

A
7 

 

G
x 

 

3. 

II
−7 

| 

 

sub
V

7
/I

x 

| 

 

I
x 

 

 

A
−7 

 

A
7 

 

G
x 

 

4. 

[ ] 

| 

 

V
7 

| 

 

I
x 

 

 

E
−7

 D
7
 G

x
 

  

This section closes with two analyses, both of which focus on dominant-action chords. 

The first one addresses Mick Goodrick’s triad-over-bass-note reharmonization of “Rhythm 

Changes.” The second looks at Thelonious Monk and Denzil Best’s composition “Bemsha 

Swing.” The analysis of “Bemsha Swing” introduces the dihedral group and geometric duality. 
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Analysis 3. Mick Goodrick’s reharmonization of “Rhythm Changes” 

Modal interchange and dominant-action chords in their triadic forms create an analytical 

problem, due to Mehrdeutigkeit. For example, consider D
Δ in the key of C major. Does D

∆
 

function as modal interchange, IIΔ
7
, or as dominant-action, 

sub
V/I? Analytical determination is 

open to an interpretation based on the composition’s style and/or surrounding musical events. 

Given the harmonic nature of “Rhythm Changes,” with its liberal inclusion of applied dominants 

and the extended dominant pattern occupying the bridge, the choice is made to treat such triads 

as dominant-action chords.
94

   

     Dominant-action explains the relationships held between the upper-structure triads and  

other musical forces, such as the stated harmony and bass line. One would suspect that the triads 

and bass notes work as a unit—this is not the case. The bass notes constitute a complete musical 

event separate from the upper structure triads, a point taken up in the analysis. 

 

 

 

 

 

 

 

 

 

 

                                                
94 An extended dominant pattern is a harmonic progression built from a sequential chain of dominant-action chords. 

Examples include the harmony of “Sweet Georgia Brown” and the bridge to “I’ve Got Rhythm.” 
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Example 9. Mick Goodrick's reharmonization of “Rhythm Changes” 

 

The following précis pertains to the bass notes.  

mm. 1-4: The reharmonization opens on a four-bar dominant pedal releasing on 

mm. 5-6: the first structural tonic, part of a minor-tonic consonant skip ( ̂ → ̂), followed by 

mm. 6-8:  cycle-five sequence presented as ascending pitch-interval 4, spanning  ̂ to   ̂. 
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mm. 9-12: A chromatic fifth-progression spanning ( ̂  →  ̂) ensues, followed by 

mm. 13: a major-tonic consonant skip ( ̂ → ̂) correcting the initial minor inflected consonant 

skip in m.5. 

mm.14-16: Cycle-five motion returns albeit in its inverted form, the descending pitch-interval 7, 

spanning   ̂ →  ̂. This final section is a IV—II complex where the descending cycle-five motion 

is an expansion of IV closing on  ̂— ̂— ̂. 

The précis pertaining to triadic upper-structures focuses on the triad’s dominant-action 

relationship to either: (1) an adjacent triad, (2) an adjacent bass note, or (3) adjacent stated 

harmony. To reduce visual clutter, extended dominant patterns are shown using eighth-note 

beams. As analytical symbols, the significance of a solid beam and a dotted beam hold to the 

same definitions as dominant-action arrows. Because all but the last three triads are major, the 

use of delta as the symbol for major is suspended in this analysis.  

mm. 1-6: Triads relate to the stated harmony except for one deviation in m.3 where the triad 

relates to the subsequent bass note.  A tri-tone exchange (D
∆
—A

∆
) precedes a single 

sub
V that 

moves to a Janus chord that looks forward as a 
sub

V to the stated harmony, and looks backward 

as a back-relating dominant of the previous bass note. The roots of the first twelve triads attain a 

twelve-tone row (10,1,9,11,0,4,6,2,8,7,5,3), B = 0.  

mm. 6-8: The last note of the row statement begins a series of three exchanges resembling 

chromatic voice exchanges between the triadic root and bass note.  

mm.  8-10: Triads form the exchange (01), where {0 = 
sub

/V, 1 = dominant}.  

mm. 10-11: The first chord in each measure contains a bass note which holds a dominant 

relationship with both the subsequent triad and bass note. 
sub

/V motion passes between triads to 

bass notes.  
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m.12: A tritone swap precedes a second Janus chord where the triad looks backward as a back-

relating dominant to the preceding bass note and also looks forward as the 
sub

V/I, resolving into 

the tonic bass note in, 

mm. 14-16: 
sub

/V extended dominants close at the arrival of bass note  ̂. The minor triads in the 

final two triads provide harmonic extensions over the stated harmony, and are not part of the 

dominant-action scheme.   

Analysis 4. “Bemsha Swing”  

  The composition “Bemsha Swing,” co-written by Thelonious Monk and Denzil Best, 

uses dominant-action harmonies as its principal harmonic force. The structural harmonic 

background is reminiscent of a typical blues: a clearly stated initial tonic and the ubiquitous 

motion to the subdominant (in m.9). Secondary dominants and 
sub

/V chords intermingle in a 

harmonic spiel that expands dominant-action usage beyond what has been discussed thus far. 

Primary dominant, secondary dominant and 
sub

/V harmonies coexist in extended dominant 

patterns rife with deceptive resolutions that move into other dominant-action target chords. Take 

the progression A
7
—A

7
—D

7
 in mm.1-2. In the home key of C major, these chords represent 

V
7
/II

−7
, 

sub
V

7
/V

7
, 

sub
V

7
/I

∆
. However, in “Bemsha Swing,” A

7
 acts as the 

sub
V

7
 of 

sub
V

7
/ V

7
 (A

7
), 

A
7
 acts as V

7
 of  

sub
V/I

Δ (D
7
), and D

7
, the 

sub
V

7
/I

∆
 that finally resolves, as expected, into C

∆
, 

m.3. This type of dominant-action motion occurs throughout the composition. Example 10 is an 

annotated lead sheet containing a functional analysis.  
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Example 10. “Bemsha Swing”  

 
 

In “Bemsha Swing,” Monk utilizes dominant-action chords as extended embellishments 

of basic diatonic harmony, an underlying I
Δ →IV  → I

∆
. His choice of root motions, displayed as 

directed interval classes, reveal an additional structure, one that is permutational in nature. Let 

 x = interval class, + = ascending, and − = descending. Example 11 displays the composition’s 

directed interval classes. Harmonic phrases, shown as hn, are comprised of two parts, hn = y + z. 

Phrase h5, the coda, includes harmonies from m.11 to form a complete phrase. The final chord, 
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A
∆7

, occurs only once, and acts as an appendage to the form proper. It causes the only directed 

i.c. 4 within the composition and is excluded from Example 11, we shall return to it. 

Example 11. “Bemsha Swing,” root motion as directed interval classes 

mm. 

phrase 

hn 

y  z 

1-5 

h1 

C
∆
 A

7
 A

7
 D

7
 C

∆
 E

7
 D

7
 D

7
 (C

∆
) 

 -3  -1  +5  -1  +3  -1  -1  -1  

5-9 

h2 

C
∆
 A

7
 A

7
 D

7
 C

∆
 B

7
 A

7
 G

7
 (F

∆
) 

 -3  -1  +5  -1  -2  -2  -2  -1  

9-13 

h3 

F
∆
 D

7
 D

7
 G

7
 F

∆
 A

7
 G

7
 D

7
 (C

∆
) 

 -3  -1  +5  -1  +3  -1  ±6  -1  

13-16 

h4 

C
∆
 A

7
 A

7
 D

7
 C

∆
 E

7
 D

7
 D

7
 (C

∆
) 

 -3  -1  +5  -1  +3  -1  -1  -1  

coda 
11, 

17-20 

h5 

F
∆
 A

7
 G

7
 D

7
 C

∆
 A

7
 A

7
 D

7
 C

∆
 

 -3  -1  ±6  -1  -3  -1  +5  -1  

 

Let the set A := {−1, −2, −3, +3, +5, ±6}, the set of all directed i.c.s in Example 11. 

Figure 5 contains the six elements of A placed on the vertices of a regular hexagon. The full 

symmetry group of the regular hexagon is isomorphic to the dihedral group on six elements, D12.  
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Definition 13. Dihedral group  

Dihedral groups can be generated by two classes of group actions, rotations about a point 

in a plane and a reflection about an axis of symmetry. It is notated as Dn, the dihedral group of 

order 2n, and has the following group presentation:
95

 

Dn := <r,h | r
n
, h

2
, (rh)

2
 = i>. 

Dihedral groups describe the full symmetry group of a regular n-gon where n ≥ 3, and as shall be 

seen later, the full symmetry group of certain Platonic solids. Rotations are the members of the 

cyclic subgroup Cn; the reflection is a member of a subset of involutions that takes every set 

element q to q´. If set members x and y lay on the line representing the axis of symmetry, x and y 

are stabilized.
96

  

Define a group E as the full symmetry group of the regular hexagon acting on A,  

E := (A, D12). 

 

Figure 5. E := (A, D12) 

                                                
95 The group presentation reads as follows, the first entry are the group generators, followed by | (such that), and 

concluding with relations. The group K is the group generated by r and h, such that, r3
, h2

, and (rh)
2
 return the group 

identity element, i. 
96 For additional explanations of dihedral groups, see, Budden, 187-213; and Gallian 34-6. 

c 

b 

r
−1

 r
 

-3 

a 

-2 

+3 

+5 

-1 

±6 
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Define B := {k = [-3,-1,+5,-1], p = [+3,-1,±6,-1], s = [-2,-2,-2,-1], t = [+3,-1,-1,-1]} as the set of  

permutations of A that are found in the composition. Elements of B derive from the group 

actions of E, shown below.  

  

Example 12  lists members of B according to phrase structure. 

Example 12. Directed interval class permutations in phrases hn 

mm. 

phrase 

hn 

Permutation sub-phrase y Permutation sub-phrase z 

1-5 

h1 

k [-3,-1,+5,-1] t [+3,-1,-1,-1] 

5-9 

h2 

k [-3,-1,+5,-1] s [-2,-2,-2,-1] 

9-13 

h3 

k [-3,-1,+5,-1] p [+3,-1,±6,-1] 

13-19 

h4 

k [-3,-1,+5,-1] t [+3,-1,-1,-1] 

coda 

11, 17-20 

h5 

p [+3,-1,±6,-1] k [-3,-1,+5,-1] 

 

Permutations k and p have a more complex structure than that of t or s. Permutations k and p both 

start with some form of i.c. 3 moving to directed i.c. −1, followed by an exchange involving 

i.c.−1. Thus, k and p contain two group actions, a rotation that maps the first element to the 

second element, followed by permutational mutation into the exchange. The cyclic members of k 

and p exhibit the inverse relation; they share orthogonal axes of reflection, a and b; t and s each 

contain two set elements, and therefore are exchanges belonging to a set of involutions in E.  

           r 

          

k := [-3,-1,+5,-1]  

               
                   a 

               

            

s := [+3,-1]                              

            c   

            

t := [-2,-1] 

           b 

                     

               

            r
−1

 

p := [+3,-1,±6,-1] 

  

                    b 
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 Permutation k occurs in all y sub-phrase except h5, the coda, where p relegates k to the 

final z sub-phrase, a reflection of h3. To further investigate how phrase structure influences the 

reading of B, label the elements of B as integers where {1= k, 2= p, 3 = s, 4 = t} and define 

permutations according to phrase structure: {h1 = (14), h2 = (13), h3 = (12), h4 = (14), h5 = (21)}. 

Every permutation in Sn, n > 1, is a product of exchanges.
97

 Therefore, the product of the 2-

cycles determined by phrase structure (14)(13)(12) = (1234) agrees with r in C4. The permutation 

in h5 adds a reflection, thus creating D8. Define the group F := (B, D8). Two dihedral groups are 

at work here: E explains how the chords’ roots are represented as directed interval classes and 

form the set B, containing Monk’s E permutations. The other copy of D8, F, models the elements 

of B delineated by phrase structure.                                                                                                                                          

 Let us revisit the final sonority A
∆
 in its triadic form. Define the group T as the 

transposition group acting on the set of twelve major triads. Redefine s   E (the reflection 

through axis c) as the function composition (r
4
 ∙ a). 

 

    ⏞
 

          ⏞    
 

    ⏞
 

         ⏞  
 

 
 

(     )           by involution 

  (   )       by involution 

(   )     by involution 

     

 

With the involutions reduced out, the action r
4
 remains.  

 

                                                
97 See, Gallian, 121-2. 
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Further analysis regarding the final sonority requires two additional definitions, 

conjugation and normal subgroup. 

Definition 14. Conjugation 

“Assume G is a group. Conjugation is an equivalence relation defined in G: two group members 

a and b are conjugate if there exists g ∊ G such that a = g
−1

bg, thereby partitioning the set G into 

disjoint equivalence classes of conjugate elements, known as conjugacy classes.”
98

 Conjugation 

determines the outcome of one group element under another group element. Accordingly, we 

write b
g
, and say b under (the action of) g. This usage is opposed to the language that describes 

the multiplicative action bg, in which we say b followed by g, or simply b by g.     

Conjugations of group elements form an automorphism class, known as inner 

automorphisms of G → G. Budden explains, 

If x remains fixed, while y runs through all elements [members] of the group, i.e. 

we consider the elements xy1x
−1

, xy2x
−1

, xy3x
−1

, …, xynx
−1

, then we can show that 

the correspondence yr   xyrx
−1

 constitutes an automorphism.
99

 

 

The following example adapts Budden’s discussion to show inner isomorphisms of D6 using our 

notation. The example is then reinterpreted as D6 acting on the set of the three unique octatonic 

collections, to model T/I sections and to illustrate conjugation musically. D6 actions are:  

{i, r, r
−1

, f(a), f(b), f(c)}. For a geometric representation of D6, refer to Figure 2. 

Example 13. Conjugation as inner automorphism  

       
       

            

       
       
       }

 
 

 
 

 

   
   

        

   
   
   

 

                                                
98 Moore, 105. 
99 Budden, 152. 
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Assign the following T/I actions to the actions of D6: (r = T4, r
−1

 = T8, a = I4, b = I0, c = I2), let 

these actions act on the set of unique octatonic collections. Permutations are shown in cyclic 

notation and actions on the triangle.  

i = T0 = (Oct(0,1)) (Oct(1,2)) (Oct(2,3)) = 
   (   )

   (   )    (   )
 

 

T1,4,7,10 = (Oct(0,1), Oct(1,2), Oct(2,3)) =  
   (   )

   (   )    (   )
 

 

T2,5,8,11 = (Oct(01), (Oct(2,3), Oct(1,2)) = 
   (   )

   (   )    (   )
 

 

a = I1,4,7,10 = (Oct(1,2), Oct(2,3)) = 
   (   )

   (   )    (   )
 

 

b = I0,3,6,9 = (Oct(0,1), Oct(2,3)) = 
   (   )

   (   )    (   )
 

 

c = I2,5,8,11 = (Oct(0,1), Oct(1,2)) = 
   (   )

   (   )    (   )
 

 

The reinterpretation of Budden’s example gives examples of      ,   
  and   

  . To these, we 

include   
   and   

  , shown in Table 1.  
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Table 1. T/I conjugation 

      T/I 

Conjugate 
Action 

Inner 

Automorphism 
Formula 

    
(   )

(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

                

  
   

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

            

      

  
   

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

               
   

  
      

  
   

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

           
  

= Ix+2y 

  
   

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

           
  

= Ix+2y 

  
   

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

           
  

= Ix+2y 

  
   

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

             

  
      

  
   

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

  
→

(   )
(   ) (   )

            
  

=    +2y 

 

 Definition 15. Normal subgroup 

“A subgroup H of a group G is called a normal subgroup of G if aH = Ha for all a in G. H is 

normal in G if and only if xHx
−1

 ⊆ H for all x in G. It is written H ⊲ G.”
 100

   

Returning to the final chord in “Bemsha Swing,” inscribe a regular hexagon within the 

regular dodecagon. Let the lines of the dodecagon represent the elements of the set D := the 

twelve major triads, and let the group T be the transposition group (C12) acting on D,  

T := (D, C12). Let the hexagonal vertices represent elements of the set F be the rotational 

permutations of E. Define the group H as C6 acting on F, H := (F, C6), and put H ⊲ T.  Plot the 

point q, representing r
4
   H; plot the line q´ on T to show the directed i.c. −4 that maps C

∆
 ↦ 

A
∆
. Therefore, we say q and q´ share the same point, which lives in the geometric duality held 

between H ⊲ T.   

 

                                                
100 Gallian, 172-3. 
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Figure 6. Geometric duality and “Bemsha Swing’s” final sonority
101

 

2.5. Tonic Systems 

 Tonic systems, written X T, are harmonic units derived from symmetrical divisions of the 

octave.
102

 Most often, the chordal quality contained within a tonic system is of constant-

structure, meaning, each chord that is contained within the tonic system is of an invariant quality. 

For example, consider the major triads in Coltrane’s “Giant Steps,” or the C
∆75 → E

∆75 → A
∆75 

                                                
101 This is a duality between the six-sided figure and the twelve-sided figure. The quotient of the twelve-sided figure 

is modulo the subgroup generated by <T6>, T/<T6>.  
102 Scale collections that divide the octave symmetrically serve as tonic system generators, e.g., octatonic, hexatonic, 
or nonatonic (ennatonic). These collections are also referred to as modes of limited transposition. See, Olivier 

Messiaen, La technique de mon langage musical, trans. John Satterfeld (Paris: Alphonse Leduc, 1956), 58-63; John 

Schuster-Craig, “An Eighth Mode of Limited Transposition,” The Music Review 51, no. 4 (1990): 296-306; Jack 

Douthett and Peter Steinbach, “Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and 

Modes of Limited Transposition,” Journal of Music Theory 42, no.2 (1998): 241-63. 

q´ = A 
∆

 
  T

8
 [−4] 

      G
∆

 
T

7
 [−5] 

  

    E

∆

 
T

3
 [+3] 

  

    D
∆

 
T

2
 [+2] 

  

    D

∆

 
T

1
 [+1] 

  

    G

∆

 
T

6
 [±6] 

  

    A
∆

 
T

9
 [−3] 

  

    B

∆

 
T

10
 [−2] 

  

    B
∆

 
T

11
 [−1] 

  

i 

  

r
−1

 

r
3
 

r
2
 

r 

    C
∆ 

T0 [±0] 

 

    E
∆

 
T

4
 [+4] 

  

    F
∆

 
T

5
 [+5] 

  

                     

⦁ 

 

  

 

  

q = r4
 

r 
T 

H 
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chords in“The Beatles.” There is, however, no strict requirement to this practice—one may 

include non-invariant chord qualities as long as all harmonic pitch content contained within the 

tonic system corresponds to a symmetric scale.  

  The generating interval class defines the tonic system, whereby the tonic system 

descriptor X equals the order of their orbit. Therefore, tonic system (GΔ, E
Δ, BΔ) represents an 

orbit of order 3, in which three iterations of T4 produce self-coincidence, a three-tonic system, 

written 3
T
, and may be derived from either the hexatonic collection or the nonatonic 

collection.
103

 An orbit of order 4 with four T3 iterations effecting self-coincidence,  

(GΔ, EΔ, D
Δ, B

Δ), represents a four-tonic system, written 4
T
. This is derived from the octatonic 

collection.
104

 Harmonies contained within a tonic system, like diatonic and modal interchange 

chords, may act as target chords, the object of their dominant-action II—V complexes, shown 

below.    

 Example 14.1. Two tonic system [2
T
] 

2
T
 

[ ]      (
sub

V
7
/Ix) 

E
−7

       A
7 

  |______| 

2
T
 

II
−7 

       V
7
 

A
−7

        D
7 

     |______| 

2
T
 

G
x
  D

x
  G

x
 

 

II
−7

          (V
7
) 

A
−7

          D
7 

   |________| 

 

[ ]      
sub

V
7
/I

x
 

E
−7

        A
7 

  |_______| 

 

 

  

 

                                                
103 The nonatonic collection is the union of two copies of the hexatonic collections: nonatonic(0,1,2) = 

(0,1,2,4,5,6,8,9,10) = Hex(0,1) ⋃ Hex(1,2). In this document, three-tonic systems are treated as part of the hexatonic 

collection exclusively.   
104

 The whole tone collection is an anomaly. Although examples of  six-tonic systems do exist, for example, {G
Δ
,  

FΔ, E
Δ, D

Δ , BΔ, AΔ}, only the root motion holds to the generative symmetric scale; the union of all triadic pitches 

attains the chromatic aggregate.     
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Example 14.2. Three tonic system [3
T
] 

 

3
T
 

 

VII
−7

  (
sub

V
7
/II

−7
) 

F
−7

         B
7 

     |_______| 

3
T
 

IV
−75   (V

7
/III

−7
) 

  C
−75           

F
7 

    |________| 

3
T
 

II
−7

       V
7
 

A
−7

       D
7 

    |______| 

3
T
 

G
x
  E

x
  Bx  G

x
 

 

 

III
−7

  (V
7
/II

−7
) 

    B
-7

     E
7 

     |_____| 

 

I
−7

   (
sub

V
7
/III

−7)
 

G
-7

         C
7 

  |_______| 

 

[ ]   
sub

V
7
/I

x
 

E
−7

      A
7 

   |_____| 

 

 

Example 14.3. Four tonic system [4
T
] 

4
T
 

VII
−75   (V

7
/VI

−7
) 

   F
−75        B

7
 

     |________| 

4
T
 

[ ] 
sub

V
7
/I

x
 

E
−7

  A
7 

    |____| 

4
T
 

IV
−7   

(
sub

V
7
/VI

−7
) 

 C
−7

            F
7 

   |________| 

4
T
 

II
−7

   V
7
 

A
−7

  D
7 

      |___| 

4
T
 

G
x
  Ex  D

x  B
x  G

x
 

 

IV
−7

   (
sub

V
7
/VI

−7
) 

C
−7

             F
7 

  |________| 

 

II
−7

   V
7
 

A
−7 

  D
7 

     |____| 

 

VII
−75 

(V
7
/VI

−7
) 

  F
−75          

B
7 

     |______| 

 

[ ]    
sub

V
7
/I

x
 

E
−7 

     A
7 

  |______| 

 

 

Example 14.2 is the 3
T
 system contained Coltrane’s “Giant Steps,” derived from Hex(1,2). The 

other harmonies are dominant-action chords.  

Example 15. “Giant Steps,” graphic analysis 
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The term tonic system carries with it the inference of a multi-tonic construction, a term 

sometimes used to describe this type of harmonic unit. This association is somewhat fallacious, 

however, as it suggests that each harmonic component is cognitively processed as a discrete 

tonic that is established through modulation. If one instead considers the requirements of 

modulation—one being, the requisite confirmation of the new key—the idea of tonic systems as 

a series of modulations falls short of meeting such a definition. As such, tonic systems can exist 

within compositions that are based in a key without invoking a strict definition of modulation 

(which would imply that other keys have replaced the home key). To illustrate, consider the 

motion I
7
 → IV

7
 in a B blues. We want to superimpose harmonies that create a sense of motion 

into the IV
7
 chord. An introductory option is to draw upon dominant-action harmonies. 

Example 16. Harmonic superimposition, 
sub

V
7
/IV

7
 

Chord/Scale  E Lydian dominant  

    

Analysis   [ ]       
sub

V
7
/IV

7
  

    

Superimposition  B
−7

             E
7 

   |                | 

 

 

Chord/Scale B Mixolydian  E Mixolydian 

    

Analysis I
7
  IV

7
 

    

Stated Harmony B
7
  E

7
 

   

We could superimpose a 3
T
 system from Hex(2,3) to provide motion into IV

7
, see Example 17; or 

combine the two techniques by leading into the 3
T
 system’s first chord with a triadic 

representation of its 
sub

V, C
∆
. Initially, C

∆
 sounds as an upper-structure triad to B

7
, implying the 

harmonic tensions 9, 11, 13, alluding to a B Lydian dominant chord/scale choice. Only upon 
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resolution to B
∆
, the first 3

T
 chord, do we recognize C

∆
 as a 3

T
 preparation rather than an 

extension of B
7
.   

Example 17. Harmonic superimposition, 3
T
 

Chord/Scale III 

 B 

Lydian 

dominant 

Hex(2,3) 

 

    

Chord/Scale II  C Lydian B Lydian G Lydian   E Lydian Dominant 

      

Chord/Scale I    C Ionian B Ionian G Ionian E Mixolydian 

      

Analysis  
Sub

V/B
∆
                              3

T
 

  
 

 

Superimposition  C
∆
     B

∆ 

     | 

G
∆ 

| 

E
∆
 

| 

      

Chord/Scale 
B  

Mixolydian 

   
E Mixolydian 

Analysis I
7
 

                                                                 

IV
7
 

Stated Harmony B
7
 

                                                                 

E
7
 

 

The technique in the previous example shows that tonic systems are not strictly multi-tonic 

modulatory constructions that threaten to destroy an established key; rather, they coexist with 

harmonies that have clearly defined functional implications without destroying those 

implications. Moreover, tonic systems hold the possibility of strengthening the aural perception 

of the functional implications held by the harmonies they embellish.  

Coltrane exploited this quality in his contrafactual writing and improvisations.
105

 

Coltrane’s contrafacts, not only replace the existing melody, as in a typical contrafact, but the 

harmonic foreground as well. Interpolated chromatic mediant relationships, based upon tonic 

                                                
105 Contrafacts are compositions where the composer takes an existing composition, and replaces the existing 

melody with a new one. This was a popular practice in the be-bop era to thwart copyright laws.  
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systems, embellish the original composition’s structural events. Walt Weiskopf and Ramon 

Ricker cite numerous examples, compiled in Example 18.
106

  

Example 18. Coltrane contrafacts 

Original Composition Composer Coltrane Contrafact 

“Tune-Up” 

Eddie Vinson 

(often attributed 

to Miles Davis) 

“Countdown” 

“But Not for Me” George Gershwin “Fifth House” 

“Confirmation” Charlie Parker “26-2” 

‘How High the Moon” Morgan Lewis “Satellite” 

“I Can’t Get Started” Vernon Duke “Exocita” 

    

This harmonic concept emancipates the triad from the relationship held with the stated harmony 

of a standard tune. In Example 19, tonic systems act as reharmonizations in excerpts from two 

standard tunes, the relatively static harmony contained in the first eight bars of Gene dePaul’s 

“I’ll Remember April” and the extended dominant pattern in the bridge of “Rhythm Changes.”   

Reharmonizations also serve as a basis for chord/scale choices, as was done in the B blues 

example prior. In the following examples, the stated harmony occupies the bottom row, bold 

type highlights members of the tonic system, and arrows show dominant-action resolution. 

Example 19.1. 3
T
 reharmonization, first eight bars of “I’ll Remember April,” containing triads 

from Hex(2,3) 

Measure 1 2 3 4 5 6 7 8 9 

Reharmonization GΔ  B
7
 E

Δ  F
7
 BΔ  D

7
 GΔ G

−
  B

7
 E

−
  F

7
 B

−
  D

7
 G

−
 

 

Stated Harmony GΔ G
−
 A

−75 

   

 

                                                
106 Walt Weiskopf and Ramon Ricker, Giant Steps: A Player’s Guide to Coltrane’s Harmony for All 

Instrumentalists (New Albany: Jamey Aebersold Jazz, 1991). 



67 

 

Example 19.2. 3
T
 reharmonization, first eight bars of “I’ll Remember April,” containing triads 

from Hex(2,3) and Hex(1,2) 

 

Measure 1 2 3 4 5 6 7 8 9 

Reharmonization 
GΔ 

 

F
-7

  B
7
 E

Δ  F
7
 BΔ  D

7
 C

Δ  B
7
 AΔ  G

7
 FΔ  A

7
/C D

Δ  B
7
  

Stated Harmony GΔ G
-
 A

-75 

 

Example 19.3. 3
T
 reharmonization of the bridge to “I’ve Got Rhythm,” containing triads from 

Hex(1,2) and Hex(11,0) 

Measure 1 2 3 4 5 6 7 8 9 

Reharmonization 
D

7
  F

7 

 

B
Δ  D

7
 G

Δ  A
7
 DΔ  G

7
 C

7 
 E

7
 A

Δ  B
7
 EΔ  G

7
 CΔ  F

7
  

Stated Harmony D
7
 G

7
 C

7
 F

7
 B

  

 

In the example above, the C
7
—F

7
 reharmonization section is a T10 image of the D

7
—G

7
 

reharmonization. 

Example 19.4. 3
T
 reharmonization of the bridge to “I’ve got Rhythm,” containing triads from 

Hex(3,4) and Hex(1,2) 

Measure 1 2 3 4 5 6 7 8 9 

Reharmonization 
D

7
  G

7 

 

CΔ  E
7
 A

Δ  B
7
 EΔ  G

7
 C

7
  B

7
 B

Δ  G
7
 G

Δ  E
7
 DΔ  F

7
  

Stated Harmony D
7
 G

7
 C

7
 F

7
 B

  

 

In Example 19.4, triads over D
7
—G

7
 derive from Hex(3,4) while triads over C7—F7 derive from 

Hex(1,2). 

Through the tonic system, we obtain an aurally identifiable harmonic device that 

influenced contrafact composition, reharmonization, and chord/scale choices. Coltrane defined a 

harmonic set generated by symmetrical divisions of the octave, and used this set as a stylistic 

hallmark, so much so that jazz musicians use the colloquial term “Coltrane changes” to describe 
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this musical technique.
107

 While 3
T
 systems are what jazz musicians are describing with this 

colloquial term, Coltrane did not limit himself to 3
T
 systems. In the next analysis, we see  

Coltrane’s use of the 4
T
 system.   

Analysis 5. “The Father, and the Son, and the Holy Ghost” 

Coltrane recorded the Meditations suite in 1965. In the suite’s first movement, “The 

Father, and the Son, and the Holy Ghost,” Coltrane presents a melodic gesture built upon an 

ascending major triad arpeggio that contain an added passing tone, equating to the triad’s  ̂.  

David Liebman discusses the symmetry between the suite movements in terms of the keys that 

the individual movements suggest, the form of the suite as a whole, and the use of rhythm and 

musical intensity among the various movements.
108

 The symmetry addressed in this analysis 

involves pitch content, specifically, 4
T
 systems.  

Define the set X := {1 = Oct(0,1), Oct(2,3), Oct(1,2)} and the group K := (X, D6).
109

 Further, 

define the following sets as three copies of the set of major triads obtained from the octatonic 

collections:  

T
[1]

 := (Oct(0,1)) = {1 = G
∆
, 2 = E

∆
, 3 = C

∆
, 4 = A

∆
}), 

T
[2] 

:= (Oct(1,2)) = {1 = G
∆
, 2 = E

∆
, 3 = D

∆
, 4 = B

∆
}), 

T
[3] 

:= (Oct(2.3)) = {1 = A
∆
, 2 = F

∆
, 3 = D

∆
, 4 = B

∆
}). 

Define the group Z :=   
 . We note that D8 acts individually on each of the three copies of T

[1…3]
. 

Figure 7 is a geometric representation of D8.  

                                                
107 While jazz musicians commonly refer to this technique as “Coltrane changes,” however, this harmonic technique 

existed much earlier, traceable to at least C.P.E. Bach. See Matthew Bribitzer-Stull, “The A—C—E Complex: The 

Origin and Function of Chromatic Third Collections in Nineteenth-Century Music.” Music Theory Spectrum 28 no.2 

(2006): 167-190. 
108 David Liebman, “John Coltrane’s Meditations Suite: A Study in Symmetry,” Annual Review of Jazz Studies 8 

(1996): 167-80. The transcription of “The Father, the Son, and the Holy Ghost” is on page 170 of Liebman’s article. 

a reproduction is contained in Appendix B.3. 

109 For a geometric representation of D6, see Figure 2.  



69 

 

 

Figure 7. Symmetries of the square ≅ D8 

 

Example 20. “The Father, and the Son, and the Holy Ghost” 

 

The harmonic content includes triads from three 4
T 

systems and their corresponding dominant-

action chords. 4
T
 iterations delineate the music into four distinct parts: A = mm. 4-7,  

d 

c 

a 
b 

r 

4 

3 

1 

2 

C
4
 

i := (1)(2)(3)(4) 

r := (1234) 

r
2

 := (13)(24) 

r
−1

 := (1432) 

D
8
 := <C4, fx ∊ f (a…d)> 

a := (14)(23) 

b := (24) 

c := (12)(34) 

d := (13) 
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B = mm. 8-9, A´ = mm. 11-18, C = mm. 20-24. Triadic inversional positions support this 

reading. The majority of triads are in second position except: m.4, the first triad in section A;  

m. 11, the first triad in section A´; and m. 20, the first triad in section C. Dominant-action chords 

fill mm. 1-3, m. 10, and m. 19.   

An extended dominant progression A
∆
—D

∆
 ushers in G

∆
, the initial triad of section A, 

which is modeled by using group action (T
[1]

, D8): r. The action on T
[1]  

ceases on  C
∆
. It becomes 

a dominant-action chord to F
∆
, the initial triad of section B. F

∆
 progresses to D

∆
, which begins a 

second extended dominant pattern. The reinterpretation of D
∆
 as an extended dominant chord 

ends section B, thus defining a group action of order 2. We consider this action to be an 

exchange in (T
[2]

, D8): c. The second extended dominant pattern returns C
∆
, the abandoned triad 

in section A. (T
[1]

, D8): r continues through section A´, ultimately completing two (T
[1]

, D8): r 

cycles. A´ ends on A
∆
, which becomes the first chord of a final extended dominant pattern, 

leading to G
∆
 and the arrival of section C. This final motion is modeled with the permutation (T3, 

D8): r.   

“The Father, The Son and The Holy Ghost” is another example of a direct product of two 

groups, Z × K, where Z describes the triads within sectional boundaries and K explains the group 

action that generates the sections defined by the octatonic collections. Section A = Oct(0,1) = X1, 

section B = Oct(2,3) = X2, section A´ = Oct(0,1) = X1, section C = Oct(1,2) = X3.  Therefore, K: b,c 

represents K: (1,2),(1,3) the group actions in K that map the octatonic collections. The analysis 

tells us that Coltrane’s use of 4
T
 system material takes the form Z × K ≅   

 × D6.      

 The next analysis considers 3
T
 and 4

T
 systems working in concert in Willis Delony’s and 

William Grimes’s arrangement of Richard Rodgers’s and Lorenz Hart’s “Have You Met Miss. 



71 

 

Jones.” The analysis also expands the definition of the direct product to include actions of the 

familiar musical transposition group Tn on major triads. 

Analysis 6. “Have You Met Miss. Jones” 

 “Have You Met Miss. Jones” is an early example of a tonic system, carrying a 

publication date of 1937. The song in in key of F major and has an AABA form. The formal B 

section, containing the tonic system is of interest here.   

Example 21. 3
T
 system in “Have You Met Miss. Jones,” formal section B   

 

 IV
∆7  

 [ ]     V
7
/G

∆7
            [ ]      V

7
/D

∆7
         [ ]       V

7
/G

∆7
          II

−7
      V

7
                                           

            |________|               |______|                |________|                |_____|                                                                                           

 

B
∆7

 A
−7 

      D
7
 G

∆7
 E

−7
      A

7
 D

∆7
 A

−7
       D

7
 G

∆7
 G

−7
     C

7
 

   |                                |                               |                                 | 

                                                   3
T
                     

 

The novel aspect of the arrangement is a consistent T3 modulation for each subsequent 

chorus during the solo section. This means that after four choruses, the T3 transpositional level 

returns the harmony to the home key. After passing through a series of 3
T
 systems, and when 

taken as a set union, this system attains all twelve major triads. To analyze the arrangement, we 

involve the group theoretical concept of an external direct product, which creates a new group 

from certain subgroups. This is the type of direct product we have used thus far.
110

 Our goal is to 

explain the creation of a group structure isomorphic to C12 that describes the above arrangement 

and a method musicians might use to organize the music cognitively. Figure 8 is a geometric 

modeling of the twelve major triads partitioned into 3
T
 systems. Define the set X := { all major 

triads}, and define the group Y := (X, C12). Y is isomorphic to the transposition group Tn acting 

on X.  

                                                
110  There are two types of direct products. An internal product is a decomposition of a group into certain subgroups 

and the external direct product is the creation of a new group from certain subgroups. A definition follows. 
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Figure 8. Group Y   

 

While the four unique tonic systems are clearly apparent in Figure 19, this reading weighs 

heavily on the side of the stated harmony. The spirit of the arrangement is subordinate, as the T3 

component between choruses is not addressed. To do so, one would need to show the 3
T
 aspect 

of the arrangement. In Figure 8, this requires a rotation of three points to the right or left on the 

triangle modeling {B
∆
, G

∆
,  D

∆
} to arrive at the subsequent chorus’s pitch level. This 

interpretation begs the questions, is this truly the structure of the arrangement and is this how the 

musicians approach playing over the harmony?  

Let us first consider the composers’ contribution to the arrangement. Define the set  

A := (B
∆
,G

∆
,D

∆
), and the group E := (A, C3). When playing the tune the typical fashion, each 

chorus remains at an invariant pitch level, represented as the set A at T0, or E: i. Whereas this 

mapping seems a rather rudimentary concept in set theory, in group theory, elements that map to 

the identity element in a homomorphism form an important normal subgroup called the kernel of 

a homomorphism. By studying the kernel, we gain greater insight into the arrangement.   

C∆ 

C
∆ 

D∆ 

D
∆ 

E∆ 

F∆ 

G
∆ 

G∆ 

A
∆ 

A∆ 

B
∆ 

B∆ 
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Definition 16. Kernel of a homomorphism     

Let G and G´ be two groups, the operation in each case being indicated as multiplication. A 

homomorphism of G into G´ is the mapping      →      such that (  )  (  )(  ), for 

arbitrary a, b   G. The kernel of a homomorphism of a group is the subset of G that maps onto 

the identity element (i) of G´, written Ker(f),and defined as 

{     |  ( )       .111
 

Let X remain as the set of all 12 triads and let the group Y be the transposition group acting on X; 

let the transposition group be shown as the function f; and the group Y´ as the four unique 3
T
 

systems in chromatic space that are acted upon by f. As shown in Example 22.1, three members 

of f, {T0,T4,T8}, map Y to the identity of Y´. Therefore, Ker(f) in Y 
 
→ Y´ is {T0, T4, T8}. 

Example 22.1. Ker(f) in Y 
 
→ Y´ 

 

 

Y 

 

                 f = Tn 

Ker(f) in E 
 
→ E´ = (T0, T4, T8). 

 

Y´ 
 

B
∆
   

G
∆
  {1 = (B

∆
,G

∆
,D

∆
)} 

D
∆
   

B
∆
   

G
∆
  {2 = (B

∆
,G

∆
,E

∆
)} 

E
∆
   

C
∆
   

A
∆
  {3 = (C

∆
,A

∆
,E

∆
)} 

E
∆
   

D
∆
   

F
∆
  {4 = (D

∆
,F

∆
,A

∆
)} 

A
∆
   

 

                                                
111 Gallian, 194-200; Moore, 108-10. 
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The arrangers’ contribution is the T3 cycle that brings the 3
T
 system’s pitch level to self-

coincidence, which is a member of the kernel of the homomorphism   
 
→    . Define the set B as 

all twelve pitch classes partitioned into subsets generated by T3. B  := ({B,D,E,G}), 

({B,D,F,A}), {C,E,G,A}). The T3 transpositional levels used in the arrangement are the orbit 

restriction C := (B,D,E,G) in B.
112

 Elements in C represent the first chords for each chorus. For 

example, the first chorus starts on B
∆
, then unfolds a 3

T
 system; the second chorus starts on D

∆
 

then unfolds a 3
T
 system, the third chorus starts on E

∆
 and unfolds a 3

T
 system, and so on. 

Therefore, the arrangement produces four copies of A, one copy for each element in C. The T3 

transposition level between choruses belongs to Ker(f ) in   
 
→     = (T0,T3,T6,T9).   

Example 22.2. Ker(f) in F 
 
→ F´ 

 

F 

 

f = Tn 

Ker(f) in F 
 
→ F´ = (T0, T3, T6, T9) 

F´ 

B   

D   

E  {1 = (B
∆
,D

∆
,E

∆
,G

∆
)} 

G   

B   

D   

F  {2 = (B
∆
,D

∆
,F

∆
,A

∆
)} 

A   

C   

E   

G  {3 = {C
∆
,E

∆
,G

∆
,A

∆
)} 

A   

 

    

 

 

                                                
112 When considering an orbit restriction, we look at the action of a group on a subset of its orbits (which may be one 

orbit). The orbit restriction may have a different permutation representation than the group itself. 
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In terms of group structure, the arrangers have introduced a group defined as D := (C, C4), the 

transpositional level between choruses. It has an action on the composers’ group defined as 

 E := (A, C3), the original 3
T
 system. The direct product of E × D produces the group  

Y := (X, C12).  

Definition 17. Direct product 

A group Φ is the direct product of its subgroups Ψ1, Ψ2,…,Ψn, and we write 

 Φ := Ψ1 × Ψ2 × … × Ψn, if either of the following sets of conditions is satisfied: 

(A) (1) The subgroups Ψ1, Ψ2,…, Ψn are normal in Φ. 

      (2) Ψ1, Ψ2,…,Ψn = [Ψ1, Ψ2,…,Ψn] = Φ. 

      (3) Ψg ∩ (Ψ1 … Ψg-1 Ψg+1 … Ψn) = i, g = 1, 2, … n. 

(B) (1) hghj  = hjhg, for arbitrary hg   ΨG and hj   ΨJ, g ≠ j, g, j  = 1,2, …, n. 

      (2) Each k    Φ has a unique representation as a product k := h1h2 … hn, where 

hg   Ψg,  

g := 1, 2, …, n.
 113

  

 

Holding to the notation in the above definition, let Φ := C12, so that for a ∊ Φ, a
12

 = i. The 

elements {i, a
4
, a

8
} (derived from the original harmony) comprise a (multiplicative) cyclic 

subgroup C3, denoted ΨB. The elements {i, a
3
, a

6
, a

9
} (from the arrangement) make up a 

(multiplicative) cyclic subgroup C4, denoted ΨD. The elements of ΨB  and ΨD commute as they 

are cyclic subgroups of the cyclic group Φ. Each element of Φ has a unique representation in the 

form db,   

d    ΨD and b    ΨB: i   i = T0, d
9
   b4

 = T1, d
6
   b8

 = T2, d
3
   bi

 = T3, d
i
   b4

 = T4, d
9
   b8

 = T5,  

d
6
   bi

 = T6, d
3   b4

 = T7, d
i   b8

 = T8, d
9
   bi

 = T9, d
6
   b4

 = T10, d
3
   b8

 = T11. As this agrees with the 

conditions stated in (B), the definition of the direct product Φ ≅ ΨB × ΨD proves the assertion  

Y ≅ E × D.  

 The original question posed at the beginning of the analysis remains. Is the group Y, in 

Figure 8, the best representation of how the arrangement works. Is it indicative of how musicians 

                                                
113 Adapted from Moore, 112-17.  



76 

 

cognitively organize the music? Let us consider another possibility by using a direct product to 

generate actions on X. Define the group Y´ := (X, C12) ≅ E
4
 × D, modeled geometrically in 

Figure 9.      

 

 Figure 9. Y´ ≅ E
4
 × D  

  

Compared to the initial modeling of Y in Figure 8, the direct product   
  × C4 better explains the 

arrangement’s structure and the mental organizational scheme musicians use to navigate the 

arrangement. Regarding chord/scale implications, the set union involving triads in each   
  copy 

attains a hexatonic collection.  

G
∆
 

r 

B
∆
 

D
∆
 G

∆
 

𝐶 
   

𝑟𝑛  𝐾𝑒𝑟(𝑓)

𝑌 
𝑓
→  𝑌 

 

C
∆
 E

∆
 

B
∆
 

C
∆
 F

∆
 

E
∆
 

A
∆ A

∆
 

r 

𝐶 
   

𝑟𝑛  𝐾𝑒𝑟(𝑓)

𝑌 
𝑓
→ 𝑌 

 

𝐶 
   

𝑟𝑛  𝐾𝑒𝑟(𝑓)

𝑌 
𝑓
→ 𝑌 

 

𝐶 
   

𝑟𝑛  𝐾𝑒𝑟(𝑓)

𝑌 
𝑓
→ 𝑌 

 

r 

r 

r 

 4

   𝐾𝑒 ( )

  
 
→    
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That is, a possible chord/scale relationship for all the triads in any particular   
  region is the 

parent hexatonic:   
   

  = Hex(1,2);   
   

 = Hex(0,1);   
   

 = Hex(3,4);   
   

 = Hex(2,3). Organizing 

chord/scales as hexatonic collections in a hexatonic region provides a sonority other than the 

diatonic (Ionian or Lydian), and frees the player to accentuate additional music devices, or to 

treat dominant-action harmonies in a similar manner. We shall see the latter point addressed in a 

subsequent section of this study.  

2.6. Chord/Scale Relationships 

 The chord/scale relationship explains a dual relationship between harmony and a set 

(scale) from which additional musical material can generate. For example, one can generate 

harmonic material from a scale, as is the case with modal harmony. On the other hand, one can 

also extract a scale from a harmony. There are numerous scale possibilities that color the 

harmony’s sonority to varying degrees.
114

 This subsection discusses several chord/scale 

relationship theories and provides an overview of methods that speak specifically to triadic 

usage.   

2.6.1. The Aebersold/Baker Chord/Scale Method 

In his Jazz Handbook, Aebersold provides a Scale Syllabus that lists scales with their 

harmonic partners.
115

 This system predicates scale choice entirely on chordal quality. Chord 

quality is but one possible chord/scale determinant, and restricting the criteria to chord quality 

leaves two questions unaddressed: the inclusion of harmonic function as chord/scale criteria, and 

the organization of multiple scale possibilities over a single harmony. 

                                                
114

 Jazz musicians refer to this aural phenomenon as being either inside or outside the harmony’s sonority.      
115 Aebersold, Jazz Handbook, 14. See Appendix C for a complete listing of Aebersold’s chord/scale relationships.  
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2.6.2. Nettle’s and Graf’s Chord/Scale Theory 

The Chord/Scale Theory utilizes chord function, not merely the chord quality, as a 

determining factor. Diatonic harmony takes its usual modal presentation, e.g., in a major key, II
−7

 

takes Dorian, V
7 

takes Mixolydian, etc. As the chromatic content of a chord increases, so does 

the chromatic content of the scales. Secondary dominants, for instance, carry specific harmonic 

tensions when conceptualized within a key. As such, the method for secondary dominant 

chord/scale construction takes into account the chord’s quality and the key in which it is 

functioning. The method is as follows: consider the seventh chord as a scale; fill in the missing 

pitches from the composition’s key or the key of the moment (as in local tonicizations). With this 

method, we adhere to the proper harmonic extensions for each secondary dominant as they exist 

within a tonal framework. Example 23 lists the five secondary dominants. The primary dominant 

assumes Mixolydian. 

Example 23. Secondary dominant chord/scale relationships
116

 

 
A convenient way to organize secondary dominant chord/scales is to see them as the fifth mode 

of a scale built on the root of the intended chord of resolution. As to Example 23: (a) F Ionian (b) 

G Ionian (c) D real melodic minor, (harmonic minor is also common) (d) E harmonic minor (e) 

A harmonic minor.  

 

                                                
116 Graff, Nettles, 43. 
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The chord/scale choices for other functional harmonies are rather straightforward: 

 Non-diatonic root dominant seventh chords (
sub

V/x and dominant seventh quality modal 

interchange chords) take Lydian 7. 

 Non-diatonic root minor seventh chords take Dorian 

 Non-diatonic root major seventh chords take Lydian  

 Non-diatonic root minor seventh flat five: (1) II
−75

, VI
−75

 take Locrian (2) III
−75

, 

VII
−75

 take Locrian 2; (3) IV
−75

 takes Locrian or Locrian 2, depending on context.  

 Major seventh chords in tonic systems take Ionian or Lydian. 

 Minor seventh chords in tonic systems take Aeolian or Dorian.  

2.6.3. George Russell’s Lydian Chromatic Concept of Tonal Organization 

George Russell’s Lydian Chromatic Concept of Tonal Organization, originally published in 

1953, is an example of an early theory of chord/scale relationships. In it, Russell addresses the 

possibility of multiple scale choices of a single harmony by defining a set of scale collections he 

calls principal scales, all of which are available over a single harmony, see Example 24. The 

parent scale is Lydian or a modified form of Lydian. This scale best suits the chord quality and 

its available tensions and is chosen from among the principal scales. The choice of a parent scale 

imposes a hierarchy on the six additional scales, which offer varying degrees of chromaticism 

over the harmony. When taken as a set union, the seven principal scales attain the chromatic 

aggregate, hence the name “Lydian Chromatic.”
117

     

 

 

                                                
117 Russell, 13. 
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Example 24.  Lydian Chromatic principal scales  

Russell’s Nomenclature Scale Equivalency 

Lydian  ̂, ̂,  ̂,  ̂,  ̂,  ̂,  ̂ Fourth Mode , usual Diatonic 

Lydian Augmented  ̂,  ̂,  ̂, ̂, ̂,  ̂,  ̂  Third Mode, Real Melodic Minor 

Lydian Diminished  ̂, ̂,  ̂, ̂,  ̂,  ̂,  ̂  Fourth Mode, Harmonic Major 

Lydian Flat Seventh  ̂,  ̂,  ̂, ̂,  ̂,  ̂,  ̂  Fourth Mode, Real Melodic Minor 

Auxiliary Augmented  ̂,  ̂,  ̂,  ̂,  ̂,    ̂  Whole Tone 

Auxiliary Diminished  ̂,  ̂,  ̂,  ̂, ̂,  ̂,
o
 ̂,  ̂ Whole/Half Diminished (Octatonic) 

Auxiliary Diminished Blues  ̂,  ̂,  ̂,  ̂,  ̂,  ̂,  ̂,  ̂ Half/Whole Diminished (Octatonic) 

 

 For Russell, the parent scale determination of C Lydian for CΔ711
 is obvious. Other 

harmonic qualities are not so obvious. Take for example E
7
.  Russell states that D Lydian is the 

parent scale (D Lydian = E Mixolydian, both are rotations of the 4 diatonic); therefore, 

principal scales obtain from D Lydian. How does Russell approach a complex harmony such as 

E
75, 9

?  In this case, the parent scale is a Lydian augmented scale built on the third of the E
7
 

chord, G Lydian augmented, which is a member of E real melodic minor (equating to an E 

diminished whole-tone). Therefore, any member of the G Lydian Chromatic—the principal 

scales that agree with G =  ̂—can be used over E
75, 9.

 118
   

Example 25 illustrates at the use of the Lydian Chromatic approach in an improvised 

solo; a chordal gesture from Pat Martino’s solo on “Mardi Gras.”
119

   

Example 25. Pat Martino excerpt, “Mardi Gras” 

 
 

                                                
118 Russell, 79. 
119 Transcription by Jörg Heuser, Pat Martino: “Joyous Lake” (Mainz: BbArking Munckin Music, 2005), 13. 
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The harmony in the excerpt is D Mixolydian. Martino plays three unique chords defining the set 

F := {1 = C
∆
, 2 = D

∆
,  3 = B

−
}, F ⊂ D(1). C

∆
 occupies the opening and closing structural 

downbeats (a delayed attack rhythmically embellishes the initial structural downbeat). The other 

chords, D
∆
 and B

−
, are characteristic chords in C Lydian. Martino’s triadic gesture extends from 

the superimposition of C Lydian over D Mixolydian; C Lydian is the Lydian Chromatic Parent 

Scale for an unaltered D
7
 chord.   

 In terms of group structure, Martino uses the set of three involutions generated by  

(F, D6):  a = (23), b = (12), c = (13). 

C
∆   

 B
−
 C

∆
 D

∆
 C

∆
 D

∆
 B

−
 D

∆
 B

−
 C

∆
 

  |_______| |__________|  |___________| 

        c                   b                      a 

 

 As Mehrdeutigkeit describes an inherent ambiguity that functional harmonies possess, 

Uneindeutigkeit (not unique(ness)) describes the ambiguity inherent in chord/scale choice.
120

 

There is no unique, or single choice; a number of possibilities exist. For the jazz musician, 

Uneindeutigkeit is a tool used to convey musical affect by manipulating the levels of 

chromaticism in the musical domain. Russell’s approach provides a manner in which organize 

Uneindeutigkeit.  

2.7. Triad Specific Methods  

 We close the section on chord/scale relationships by looking at three improvisation 

methods that feature triads derived from the chord/scale relationship as their salient musical 

force. Pertinent mathematical properties held by the methods are also explained. This subsection 

                                                
120 This term is provided by the author. 
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also includes an analysis of a composition that shares the triadic set definition with one of the 

improvisation methods.  

2.7.1. Gary Campbell’s Triad Pairs 

Gary Campbell’s triadic method considers a six-note collection, generated by the set 

union of two discrete triad pairs, providing—according to Campbell—a more “concise sonority” 

than a seven-note scale. Campbell states,  

The structure and tensile strength of triads give the melodic line an independent 

internal logic…the stand alone sound is oftentimes enough to make a strong, 

effective melodic statement regardless of how it is (or isn’t) relating to the 

harmony.
121

  

 

 Campbell draws upon seven scales to derive the triad pairs: (1) diatonic; (2) harmonic 

minor; (3) real melodic minor; (4) double harmonic [0,1,4,5,7,8,11] = (C,D,E,F,G,A,B);  

(5) harmonic major; and two symmetric scales, (6) hexatonic and (7) octatonic. To negate 

common tones, triads within a pair relate by either T1, T2, T10, or T11. Therefore, we say the set 

intersection of triads j and k, where j and k are members of the superset (scale) S contains no 

common tones, 

{j,k ∊ S | j ∩ K   ∅}. 

Campbell introduces a novel approach to determine viable choices for the octatonic 

collection, which Campbell calls “auxiliary diminished,” a term borrowed from Russell. Rather 

than being conjoined with its step-wise adjacency, the triad pair in octatonic space relies on the 

voice leading scheme displayed in Example 26, where two voices move by i.c. 2 (shown with a 

normal slur) and one voice moves by i.c.1 (shown with a broken slur).  The voice leading scheme 

moves triadic elements by T6 followed by T9, and reverses parity (∆   −). 

                                                
121

 Campbell, 3. 
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Example 26. Campbell’s octatonic triad pairs 

 

Since adjacent triads share no common-tones, and two adjacent triads may form a triad pair, this 

includes the “wrapping around” of E
−
 and its adjoining with C

∆
.  

 Example 27 is an etude based upon Campbell’s technique over the harmony of Wayne 

Shorter’s composition “E.S.P.”  The chord/scale choices follow Nettles and Graf by adhering to 

the chords’ function in the key of F major, or by considering the stated tensions. In Campbell’s 

text, he allows for the addition of a single pitch to the triad. The added pitch acts as either a 

passing tone or neighbor tone to a triad member. It can belong to the prescribed chord/scale, or it 

can be a chromatically inflected tone. This additional pitch helps to conform the triad’s 

presentation rhythmically in duple meter.   
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Example 27. Triad pairs over the harmony to “E.S.P.”  
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2.7.2. George Garzone’s Triadic Chromatic Approach 

 In his Triadic Chromatic Approach, Garzone explains a theory of improvisation that 

borrows from “the twelve-tone row.”
122

 Chord/scale relationships are suspended and replaced 

with random triads that are coupled by step motion in pitch-class space.
123

 The inversional 

position of adjacent triads cannot be invariant; a root-position triad cannot follow a root-position 

triad, a first-inversion triad cannot follow a first-inversion triad, and a second-inversion triad 

cannot follow a second-inversion triad. Otherwise, the triad’s inversional positions are also 

random.  

In his explanation, Garzone mentions the possibility of using dissonant triads, but he only 

offers examples that use consonant triads.
124

 Since we are defining sets containing consonant 

triads, let us limit the following discussion to them. Garzone is describing a group structure on 

the set of consonant triads E : = {consonant triads}. Let D48 act on E, forming the group  

M := (E, D48). This group covers the actions among the triads. We must also consider an action 

on the inversional positions, of which there are three, defined as set J, J := {
 
 

 , 
 
 

 , 
 
 

}. Garzone 

allows for inversional position pairs, where two elements of J exchange. We may use D6 to 

model J; however, we cannot invoke the identity element of J. The notation for the set of non-

identity elements in a group X is indicated as X
#
. Therefore, define a subset of group R := (J, 

  
 ). Garzone’s approach uses this subset of a group structure (minus the identity element of J). 

The larger group that he is describing is G :=  M × R,  the direct product of the groups M and R.  

Garzone’s has defined a group, the product of  |M| = 48 and |R| = 5: |M ||R| = 240. 

                                                
122

 Garzone, time code 1:00. 
123 The coupling may be an ascending or descending half-step.  
124 Discerning the inversion of an augmented triad would prove problematic.  
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2.7.3. Larry Carlton’s Chord-Over-Chord Approach 

In a 2003 interview, Larry Carlton explained his approach to melodic improvisation 

based on a chord-over-chord approach. The initial idea came from Carlton’s enharmonic 

reinterpretation of an altered G dominant seventh chord.
125

 

                                                                       G
79,13 

: 

 
Instead of realizing the chord as a single entity, Carlton chooses a two-part composite, consisting 

of the basic seventh chord and a triad formed by the chord’s 3
rd

 (B) and the extensions 9 (A) 

and 13 (E). The resulting structure consists of an E
Δ
 triad lying above a G dominant seventh 

chord, hence Carlton’s term “chord-over-chord.”
126

 He ultimately realized that three additional 

upper-structure triads, B
Δ
, D

Δ
, and G

Δ
 were also available. What Carlton describes is a triadic 

partitioning (restricted to major triads) of the Oct(1,2) collection. 

 
Throughout Carlton’s description of his method, he tells us what triads to use; however, 

how to use the triads remains an open topic. To answer that question, and to understand Carlton’s 

chord-over-chord approach in group theoretical terms, define the set  

N := {1 = G
∆
, 2 = B

∆
, 3 = D

∆
, 4 = E

∆
}.  We could consider the full symmetric group S4 on these 

four elements, which yields 24 unique permutations. S4 may be manageable for the musician. 

However, as the size of the set increases, the order of Sn quickly becomes unmanageable 

                                                
125 The class of an altered chord classifies that altered tensions in a more concrete description. The codification of 

altered chords remains nebulous in jazz practice and in the literature. Here, the class is 9,13, suggesting octatonic, 

therefore, 11 is assumed within this class of altered dominants.   
126  Larry Carlton, “Money Notes,” Guitar Player, February 2003. Steve Masakowski gives this material as triads 

taken from one of the octatonic’s two fully diminished seventh chords. See, Steve Masakowski, “Major symmetry, 
Diminished Treasure” Guitar Player, July, 1996. 
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musically, i.e., |S4| = 24, |S5| = 120, |S6| = 720, |S7| = 5040, and |S8|, the full symmetric group of 

the 4 major and 4 minor triads contained within the octatonic collection , equals 40320. 

Therefore, to expand Carlton’s set definition to include all consonant triads contained in the 

octatonic collection, applying only the information Carlton provides, the musician operates 

within a S8 environment, wherein movement from triad to triad relies on aleatoric logic or strict 

aural guidance. While there are legitimate musical examples of aleatoric logic and aural 

guidance, a system of methodical organization of manageable set sizes offer much to the 

musician. In the next section of this document, Group Actions, we consider subgroups of Sn as a 

way to removing ourselves from the Sn  world. Bur first let us consider a composition that uses 

Carlton’s set N as a primary harmonic force.  

Analysis 7. “Hotel Vamp” 

In “Hotel Vamp,” Steve Swallow utilizes the four major triads of the three unique 

octatonic collections. In fact, there are no functional harmonies anywhere in the ninety-six-

measure, through-composed form. Aspects of the composition addressed in the following 

analysis include the following. (1) The four major triads holding T3 relationships between each 

adjacent triad (the set N plus two additional copies of N) contained in each four-measure 

segment of the tune. We label these segments as μnSegment, written more concisely as μnSeg, 

where n represents a specific μSeg of the 24 μSegs in the composition. The set union of any 

μSeg attains a unique octatonic collection, where  

N
[3]

 :={ A
Δ
 , B

∆
, DΔ, FΔ} ∊ Oct(2,3), 

N
[2]

 := {D
Δ
, E

Δ
, G

Δ
, B

Δ
} ∊ Oct(1,2), 

N
[1] 

:= {A
Δ
 , C

Δ
, E

Δ
, G

Δ
} ∊ Oct(0,1). 
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This system is analogous to the four unique 4
T
 systems. (2) Three μSegs form a μBlock, 

concisely written as μnBk, that spans twelve measures. The composition contains eight μBks, and 

each μBk presents the three unique octatonic collections that are created by the μSeg set unions. 

(3) The triadic permutations contained in μSeg that manifest within μBk boundaries are cycles of 

order 2 and of order 3, generated by the semidirect product   
  ⋊    . We shall see that the 

permutations defined by this semidirect product belong to a group called the alternating group 

and that the products of alternating group members are significant to the analysis. (4) 

Permutations of the relationships held between the melody and harmony also form   
  ⋊    and 

the resulting permutations also  belong to the alternating group, and the products of their 

members hold analytical significance. Appendix B.4 contains an annotated lead sheet.  
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Example 28. “Hotel Vamp,” analytical synopsis  

                                                                                          Triads 

μnBk 1 2 3 4 5 6 7 8 

μ(n)Seg 

(mm) 

1 
(1-

4) 

2 
(5-

8) 

3 
(9-

12 

4 
(13-

16) 

5 
(17-

20) 

6 
(21-

24) 

7 
(25-

28) 

8 
(29-

32) 

9 
(33-

36) 

10 
(37-

40) 

11 
(41-

44) 

12 
(45-

48) 

13 
(49-

52) 

14 
(53-

56) 

15 
(57-

60) 

16 
(61-

64) 

17 
(65-

68) 

18 
(69-

72) 

19 
(73-

76) 

20 
(77-

80) 

21 
(81-

84) 

22 
(85-

88) 

23 
(89-

92) 

24 
(93-

96) 

Oct(x,y) 2,3 1,2 0,1 2,3 1,2 0,1 2,3 1,2 0,1 2,3 1,2 0,1 2,3 1,2 0,1 2,3 1,2 0,1 2,3 1,2 0,1 2,3 1,2 0,1 

J := (R, C3) r r r r r r r r 

 (N
[3]

, C4)  i   r
−1

    i   i   i   r
2
   i   r

−1
    

P (N
[2]

, C4)  i   r
2 

  r
−1

   r
−1

   r   r
−1

   i   r
−1

  

 (N[1], C4)   i   r
−1

    r
−1

    r
−1

    r
−1

    r   r   i 

W := 

P ⋊ J ∊ A4 
i = i (43) = π2    (14) =  π4  (124) = γ

−1
  (342) = α

−1
               (124)= γ

−1
 

           π2 α
−1

 = γ
−1

 π2 γ
−1

 =  α
−1

  π2 α
−1

 = γ
−1

  

        Melody              

L := (F, C4) i r
2
 r

−1
 r

2
 r

−1
 r i r r

2
 r

−1
 i r i r

−1
 r

2
 r i r

−1
 i r

2
 i r

2
 i r

2
 

Z :=              

B ⋊ J ∊ A4 
(134) = β (342) = α

−1
 (123) = δ  (412) = γ

−1
 (143) = β

−1
  (214) = γ 

(13) = π3 

 α
−1

 γ
−1

 = β α
−1

i = α
−1

 γ
−1

 α
−1

 = δ γ
−1

i = γ
−1

 π4 α
−1

 = β
−1

 (γ
−1

)
2
 = γ  

hyper-μBk β
   α−1

 = π3 δ   γ−1
 = π3 β

−1
   γ = π3  

hyper-μBk 

(xy(z)) ∊ W 
α

−1
 γ

−1
 α

−1
 = π3 γ

−1
 α

−1
 γ

−1
 = π3 π4 π2 = π3  
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 We begin with the analysis of μSeg material featuring three copies of N. N is of degree 

4. As such, the rotational symmetry of the square, isomorphic to the cyclic group on four 

elements, C4 , serves as an appropriate group structure to model μSegs. Triadic assignments for 

N
[x]

 and the identity element (i) for each octatonic collection are listed below, 

(N
[1]

, C4): i := {1 = A
∆
, 2 = C

∆
, 3 = E

∆
, 3 = G

∆
}, {1 ⋃ 2⋃ 3⋃ 4} := Oct(0,1), 

(N
[2]

, C4): i := {1 = D
∆
,  2= E

∆
, 3 = G

∆
, 4 = B

∆
},{1 ⋃ 2⋃ 3⋃ 4} := Oct(1,2), 

(N
[3]

, C4): i := {1 = A
∆
, 2 = B

∆
, 3 = D

∆
, 4 = F

∆
}, {1 ⋃ 2⋃ 3⋃ 4} := Oct(2,3). 

Define the group P := (N
[1…3]

,   
 ), the μSeg group. 

Example 29. μSeg group P  

Octatonic (N
[x]

,   
 ) P 

(2,3) (N
[3]

,   
 ) 

i := (1)(2)(3)(4) = (A
∆
)(B

∆
)(D

∆
)(F

∆
)   

r := (1234) = (A
∆
,B

∆
,D

∆
,F

∆
)  

r
2
 := (13)(24) = (A

∆
,D

∆
)(B

∆
,F

∆
)  

r
−1

 := (1432) = (A
∆
,F

∆
,D

∆
,B

∆
)  

(1,2) (N
[2]

,   
 ) 

i := (1)(2)(3)(4) = (D
∆
)(E

∆
)(G

∆
)(B

∆
)  

r := (1234) = (D
∆
,E

∆
,G ,B

∆
)  

r
2
 := (13)(24) = (D

∆
,G

∆
)(E

∆
,B

∆
)  

r
−1

 := (1432) = (D
∆
,B

∆
,G

∆
,E

∆
)   

(0,1) (N
[1]

,   
 ) 

i := (1)(2)(3)(4) = (A
∆
)(C

∆
)(E

∆
)(G

∆
)  

r := (1234) = (A
∆
,C

∆
,E

∆
,G

∆
)  

r
2
 := (13)(24) = (A

∆
,E

∆
)(C

∆
,G

∆
)  

r
−1

 := (1432) = (A∆
,G

∆
,E

∆
,C

∆
)  

 

To facilitate μBk analysis, we need to determine the mapping of the unique octatonic 

collections. Define set R := {1 = Oct(2,3), 2 = Oct(1,2), 3 = Oct(0,1)} and group J := (R, C3).  All 

μBks share an invariant permutation, r
 
, mapping Oct(2,3) ↦ Oct(1,2) ↦ Oct(0,1), shown in Figure 

10. 
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Figure 10. μBk group  J: r 

 

Therefore, the group that represents the actions of P and J in each μnBk is the semidirect product 

W := P ⋊ J.   

Definition 18. Semidirect product 

 The notion of a semidirect product of two groups generalizes the idea of a direct 

product. Let H and K be groups and suppose that we have an action of H on K 

which respects the group structure on K; so for each x ∊ H the mapping u ⟼ u
x 
is 

an automorphism of K. Put 

G := {(u,x) | u ∊ K, x ∊ H} 

and define a product on G by 

(u,x)(v,y) := (     
, xy) 

for all (u,x)(v,y) ∊ G. 

 It is readily seen that G contains subgroups H* := {(i,x) | x ∊ H} and K* := (u,i) | u 

∊ K} which are isomorphic to H and K, respectively, and that G = K*H* and K* ∩ 

H* = i. Moreover, K* is normal in G and the way H* acts on K* by conjugation 

reflects the original action of H on K… We call G the semidirect product of K by 

H and shall use the notation K ⋊ H to denote G. [In the notation ⋊, the open side 

of the symbol is directed toward the normal].
 127

 

 

The group J models three elements. As such, the orbits of W are of order ≤ 3. Meaning, the 

action of the semidirect product stabilizes one element in N. Symmetries of the square no longer 

apply as there is no rigid motion that stabilizes a single point. However, the full symmetry group 

of the tetrahedron, isomorphic to the alternating group on four elements, written A4, can produce 

permutations on four elements with a single stabilized point.  

                                                
127 Dixon and Mortimer, 44-5. 

  3 = Oct(0,1) 2 = Oct(1,2) 

1 = Oct(2,3) 

 

                 i  := (1)(2)(3) 

                 r
−1

 : =  (123) 
  

r 
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Definition 19. Alternating group 

Every permutation in Sn, n > 1, is a product of 2-cycles. 

i := (12)(12) 

(12345) = (15)(14)(13)(12) 

(1632)(457) = (12)(13)(16)(47)(45) 

The permutation (12345) is expressed as an even number of 2-cycles; (1632)(457) 

as an odd number of 2-cycles. The group of even permutations of n elements is 

the alternating group of degree n, [written A4].
128

 

 

A4  has the presentation, 

<a, b, c | a
4
 = b

3
 = c

2
 = abc = i>. 

 

Figure 11. Tetrahedral symmetry, A4  

 

 

                                                
128 Gallian, 101-5. 

β 

α
−1

 

π4 

⦁ 

⦁ 

π2 

⦁ 

⦁ 

3 

⤿
 

⦁ 1 

4 

2 

π3 

⦁ 

⦁ 

⦁ 

⦁ 

⦁ 

⦁ 

γ 

γ
−1

 

β
−1

 

δ 

δ
−1

 

α 
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Define the set X as the permutations of P, X := {1 = i, 2 = r, 3 = r
2
, 4 = r

−1
}, to show 

members of W ∊ A4 in cyclic notation, in Example 28. Greek script denotes the A4 permutations. 

μBks one and two hold dedicated A4 permutations, i and π2 respectively, followed by μBks thee 

and four that share a single permutation, π4. This takes us half way through the composition. 

μBks five and six again hold dedicated permutations, γ
−1

 and α
−1

 respectively, followed by μBks 

seven and eight that share a permutation, γ
−1

. The A4 Cayley table, shown as Table 2, confirms 

that the product of π2 by a permutation contained in μBks five though eight produces the other 

permutations in μBks five through eight: π2 γ
−1

 = α
−1

; π2 α
−1

 = γ
−1

.    

 Table 2. A4 Cayley table 

 i π2 π3 π4 δ α γ β δ
−1

 β
−1

 α
−1

 γ
−1

 

i = (1)(2)(3)(4) i π2 π3 π4 δ α γ β δ
−1

 β
−1

 α
−1

 γ
−1

 

π2 = (12)(34) π2 i π4 π3 α δ β γ β
−1

 δ
−1

 γ
−1

 α
−1

 

π3 = (13)(24) π3 π4 i π2 γ β δ α α
−1

 γ
−1

 δ
−1

 β
−1

 

π4 = (14)(23) π4 π3 π2 i β γ α δ γ
−1

 α
−1

 β
−1

 δ
−1

 

δ = (123) δ β α γ δ
−1

 γ
−1

 β
−1

 α
−1

  i π4 π2 π3 

α = (243) α γ δ β β
−1

 α
−1

 δ
−1

 γ
−1

 π2 π3 i π4 

γ = (142) γ α β δ α
−1

 β
−1

 γ
−1

 δ
−1

 π3 π2 π4 i 

β = (134) β δ γ α γ
−1

 δ
−1

 α
−1

 β
−1

 π4 i π3 π2 

δ
−1

 = (132) δ
−1

 α
−1

 γ
−1

 β
−1

 i π3 π4 π2 δ γ β α 

β
−1

 = (143) β
−1

 γ
−1

 α
−1

 δ
−1

 π2 π4 π3 i α β γ δ 

α
−1

 = (234) α
−1

 δ
−1

 β
−1

 γ
−1

 π3 i π2 π4 γ δ α β 

γ
−1

 = (124) γ
−1

 β
−1

 δ
−1

 α
−1

 π4 π2 i π3 β α δ γ 

    

Although not triadic in nature, the melody acts in conjunction with the triads and offers 

the opportunity to develop further the discussion on A4. “Hotel Vamp’s” melody features a single 

pitch for each μSeg. The melody’s structure is a chromatic descending fourth progression 

spanning D to A, which takes two μBks to complete. Within each μSeg,the melodic pitch holds 

a different relationship with each triad in N
[x]

. Accepting enharmonic equivalence, these 

relationships define F := {4, 9, ∆7, 6}, the set in L := (F, C4). 
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Example 30. L := (F, C4) 

Melodic Relation as ∊ ℤ4 Permutation Cyclic Notation x ∊ L 

(4,9,∆7,6) (1,2,3,4) 
     
     

 ( ) i 

(6,4,9,∆7) (4,1,2,3) 
     
     

 (1234) r 

(∆7,6,4,9) (3,4,1,2) 
     
    

 (13)(24) r
2
 

(9,∆7,6,4) (2,3,4,1) 
     
    

 (1432) r
−1

 

  

Define the semidirect product Z := L ⋊ J and the set V := {1 = i, 2 = r, 3 = r
2
, 4 = r

−1
}.  

Permutations of L appear as integers to facilitate viewing Z ∊ A4 and to model the order 3 orbits 

generated by Z. Members of Z derive from products of members in W, situated below Z in 

Example 28. 

Single Z members occupy each μBk, up to μBks seven and eight, where the A4 exchange 

π3 occupies two μBks. π3 is of importance. It answers the set of exchanges π2 and π4 of W in 

μBks two through four and acts as a permutational model for the melodic group actions. Define 

hyper-μBks as the union of two μBks. The products of Z permutations held in each hyper-μBk, 

prior to μBk seven, confirms the importance of π3, as the products of the A4 permutations in the 

first three hyper-μBks all equal π3. The hyper-μBk delineated products (xy(z)) ∊ W also confirms 

the importance of π3.   

Single Z members occupy each μBk, up to μBks seven and eight, where the A4 exchange 

π3 occupies two μBks. π3 is of importance. It answers the set of exchanges π2 and π4 of W in 

μBks two through four and acts as a permutational for the melodic group actions. Define hyper-

μBks as the union of two μBks. The products of Z permutations held in each hyper-μBk, prior to 



95 

 

μBk seven, confirms the importance of π3, as the products of the A4 permutations in the first 

three hyper-μBks all equal π3. The hyper-μBk delineated products (xy(z)) ∊ W also asserts the 

importance of π3.   
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CHAPTER 3.  GROUP ACTIONS 

3.1. Introduction 

In this section, we investigate group actions on the set of consonant triads that derive 

from the scale collections covered the preceding discussions; we then posit a theory to apply the 

group actions to musically relevant contexts. Sets are organized by cardinality, (4…8), and are 

listed in the Scale Roster.  

3.2. Scale Roster 

  The Scale Roster lists the constituent consonant triadic sets contained within nine unique 

scale classes, which occupy thee scale genres based on how the scale is generated.
129

 Two 

criteria determine the inclusion of a scale within the roster. First, the scale is significant in the 

accepted jazz compositional or improvisational canon; second, the scale is capable of producing 

a sufficient number of consonant triads required to investigate symmetries based on group 

actions. There are however, scales common to jazz that are not included the roster. The bebop 

and blues scales are examples of scales commonly used in jazz that contain a chromatic trichord 

(012) subset. These scales exist within the jazz vocabulary for reasons other than harmonic 

generation. The blues scale { ̂,  ̂ ,  ̂ ,   ̂,   ̂,   ̂} categorizes chromatic inflections as “blue 

notes,” in an attempt to approximate a melismatic vocal style. Bebop scales (there are a number 

of bebop scales, but to illustrate, consider the dominant-seventh bebop scale  

                                                
129 For other examples of scale roster type organizational schemes, see, Jeff Pressing, “Towards an Understanding of 

Scales in Jazz,” Jazz Research 9 (1979); Phillip Wade Russom, “A Theory of Pitch Organization for the Early 

Works of Maurice Ravel” (PhD diss., Yale University, 1985); and Dmitri Tymoczko, “Scale Networks and 

Debussy,” Journal of Music Theory 48, no.2 (2004). 
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{ ̂,  ̂,  ̂,  ̂,  ̂,  ̂,   ̂,   ̂}) used to reconcile chord tones with rhythmic downbeats.
130

 Therefore, 

although the blues scale contains scale degree 5 and the dominant-quality be-bop scale contains 

scale degree 7, harmonies are not generally built on these scale degrees.  

 Constituent consonant triads therefore include triads that hold to typical harmonic 

spellings and chords derived from them through enharmonic equivalence; square brackets 

represent the latter. 

Table 3. Scale roster 

Genre Scale: C =  ̂ Symbol Constituent Consonant Triads |X| 

Generated 

by 

i.c.4 

Diatonic 

{C,D,E,F,G,A,B} 
D(n) {CΔ,D

−
,E

−
,FΔ,GΔ,A

−
} 6 

Synthetic 

 

Real Melodic Minor 

{C,D,E,F,G,A,B} 
M(x) {C

−
,D

−
,F

Δ
,G

Δ
} 4 

Real Melodic Minor 5 

{C,D,E,F,G,A,B} 
M+(x) {D

−
,F

Δ
,[F

−
],G

Δ
,[G

−
]} 5 

Harmonic Minor 

{C,D,E,F,G,A,B} 
H(x) {C

−
,F

−
,G

Δ
,A

Δ
} 4 

Harmonic Major 

{C,D,E,F,G,A,B} 
HM(x) {C

Δ
,E

−
,[E

Δ
],F

−
,G

Δ
} 5 

Double Harmonic 

{C,D,E,F,G,A,B} 
DH(x) {C

∆
,D

Δ
,[D

−
],[E

Δ
],E

−
,[F

−
]} 6 

Double Harmonic 5 

{C,D,E,F,G,A,B} 
DH+(x) {[D

∆
],[D

−
],E

∆
,F

∆
,[F

−
],[A

∆
],A

−
} 7 

Symmetric 

Hexatonic 

{C,C,E,F,G,A} 
Hex(x,y) {D

Δ
,D

−
,F

Δ
,F

−
,A

Δ
,A

−
} 6 

Octatonic 

{C,D,E,E,F,G,A,B} 
Oct(x,y) {C

Δ
,C

−
,E

Δ
,E

−
,G

Δ
,G

−
,A

Δ
,A

−
} 8 

 

Constituent consonant triadic set cardinality determines the proper group and geometric structure 

for modeling the scale. The following subsections address sets based on set cardinality. 

Following the group notation used above, sets from the Scale Roster take the notation  

Xn 

                                                
130 Levine, 170-3. 
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where X denotes the set, and n the pitch level identification. For diatonic collections, pitch level 

is given by key signature, (n = number of flats or sharps); for synthetic collections, the first scale 

degree is provided by x (where the variable x takes the place of variable n) ∊ p.c. (0…11); and 

for symmetric collections, the first two p.c.s are shown as (x,y).   

3.3. Symmetries on 4 Elements  

Scales modeled on four elements include the real melodic minor (M) and harmonic minor 

(H).  Symmetries of the square (2-cube), previously discussed in detail, invoke C4 and D8. 

However, there is another group that we may employ to model a set of 4 elements, the Klein 4-

group, also known as the Viergruppe (four-group), written V4.  

Definition 20. Klein 4-group  

 “Let J := {1,2,3,4} and put V4 := {(i), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}. Each group 

element is its own inverse, and the product of any two of the three nonidenity elements is the 

third one.”
 131

 

<A, B, C | A
2
, B

2
, C

2
, AB = C = BA>, 

V4 is the symmetry of the rhombus, displayed in Figure 12. V4 ≅ C2 × C2, V4 ⊲ A4. 

 

                                                
131 W.R. Scott, Group Theory (Englewood Cliffs: Prentice-Hall, 1964), 13. 
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Figure 12. Rhomboidal full symmetry group ≅ V4 

 

 Musically, the application of V4 has been explored for decades. Milton Babbitt describes 

the group of permutations that represent the classic twelve-tone operations, P, R, I, RI as 

isomorphic to V4.
132

  For our topic, V4 applies to the organization of triad pairs (drawing upon 

Campbell’s approach). The following example applies V4 to Pat Martino’s triadic gesture from 

his solo on “Song Bird.”
133 

 

 

 

                                                
132

 Milton Babbitt, “Twelve-Tone Invariants as Compositional Determinants,” in “Problems of Modern Music. The 

Princeton Seminar in Advanced Musical Studies,” special issue, The Musical Quarterly 46, no. 2 (1960): 252-3. 
133 Transcription by Jörg Heuser, Pat Martino: “Joyous Lake” (Mainz: BbArking Munckin Music, 2005), 27. 

a 

3 

4 

b 
1 

2 

V4 

i := (1)(2)(3)(4) 

a := (12)(34) 

b := (14)(23) 

c := (13)(24) 

 

c 

c 
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Example 31. “Song Bird”  

 

Martino superimposes three major triads {1= A
∆
, 2= C

∆
, 3=F

∆
} ∊ Oct(0,1), over C

79
. The triads 

present as concatenated exchanges where the third chord of each permutation acts as a pivot into 

the following exchange.   

A
∆
 C

∆
 A

∆
 F

∆
 A

∆
 C

∆
 A

∆
 

  |_______| |_______| |________| 

         a               c               a 

 

Two exchanges represent the music: (A
∆
,C

∆
) and (A

∆
,F

∆
). The three triads are well suited for 

D6. To model the four major triads in Oct(0,1), define the set N := {1 = A
∆
, 2 = C

∆
, 3 = E

∆
 ,4 = 

F
∆
} and consider the permutations suggested by the music as members of  A4 , holding E

∆
 as the 

stabilized point. (N, V4) extends this action while maintaining the thematic exchanges.  

(Oct(x,y), V4) also applies over the four minor triads in Oct(x,y).          

3.4. Symmetries on 6 and 8 Elements 

  Scales with six triadic elements: diatonic (D), double harmonic (DH), hexatonic (Hex), 

and the eight-element octatonic (Oct) can be modeled as full symmetry groups in two dimensions 

with D12 and D16, respectively. 
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Figure 13. Hexagonal symmetry ≅ D12 

4 

r−1 

6 

5 

3 

1

w 

2

f 

e 

d 

c 

b 

a 

r 

C
6
 

i := (1)(2)(3)(4)(5)(6) 

r := (123456) 

r
2
 := (135)(246) 

r
3
 := (14)(25)(36) 

r
4 
:= (153)(264) 

r
−1

 := (165432) 

D
12

 =  <C
6
, fx ∊ f(a…f)> 

a := (16)(25)(34) 

b := (26)(35) 

c := (12)(63)(54) 

d := (13)(64) 

e := (14)(23)(65) 

f := (15)(24) 
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Figure 14. Octagonal group ≅ D16 

 

r r
−1 

C8 

i := (1)(2)(3)(4)(5)(6)(7)(8) 

r := (12345678) 

r
2

 := (1357)(2468) 

r
3

 := (14725836) 

r
4 

:= (15)(26)(37)(48) 

r
5
 := (16385274) 

r
6
 := (1753)(2864) 

r
−1

 := (18765432) 

D
16

 = <C
8
, fx ∊ f

(a…h)
> 

a := (18)(27)(36)(45) 

b := (28)(37)(46) 

c := (12)(83)(74)(65) 

d := (13)(84)(75) 

e := (14)(23)(76)(85) 

f := (15)(24)(86) 

g := (16)(25)(34)(87) 

h := (17)(26)(35) 

h 

g 

f 

e 

d 

c 

b 
a 

2 

3 

4 5 

6 

7 

8 1 
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Cyclic groups are the only groups included in this study that permute the set in a single 

orbit (in reference to r and r
−1

). This action is most noticeable when modeling the diatonic.  

Musicians can easily discern stepwise motion in this familiar collection. Pedagogically, cyclic 

groups and dihedral groups are good introductory topics. Garrison Fewell, in his textbook Jazz 

Improvisation describes “diatonic substitution,” where triads from the parent diatonic collection 

are superimposed over a stated harmony, see Example 32.
134

 We recognize this as (D(1), C6): r
−1

. 

Example 32. Garrison Fewell’s diatonic substitution  

 

Sets of order 6 and order 8 hold symmetries in three dimensions as well. The octahedral 

rotational group, denoted O, is the rotations of the octahedron and of the cube, and has the 

following presentation,  

<s,t | s
2
, t

3
, (st)

4
>. 

O ≅ S4, O ≅ A4 ⋊ C2, |O| = 24. O has two generators, <s,t> in the above presentation. The 

generators of O acting on the two symmetric scales in the scale roster are: (Hex(x,y), O):  <a,b>; 

(Oct(x,y), O): <g,h>.
135

 We first consider rotational symmetry of the octahedron acting on Hex(x,y).      

 

                                                
134 Garrison Fewell, Jazz Improvisation (n.p.: Garrison Fewell, 1986), 44-7. 
135 Appendix D contains a list of (Hex(3,4), O) and (Oct(0,1), O) permutations. 
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Figure 15.  O := <a,b> 

 

With (Hex(x,y), O), we gain certain neo-Riemannian transformations (P =  a
−1

 and a
−1

b
2
), 

(L = ab
−1

a); and the hexatonic pole
136

 ((PLP = LPL) = a
2
b

3
 and b). We consider the neo-

Riemannian transformations and their generative group actions in the analysis of an excerpt from 

Pat Martino’s solo on “Joyous Lake.” 

Analysis 8. “Joyous Lake,” excerpt
137

  

 Pat Martino’s solo excerpt, taken from “Joyous Lake,” is over A Dorian harmony. 

Martino uses eight concatenated triads from the sets, two copies of Hex(x,y), and D, being acted 

on by three permutations in O. The analysis below addresses these triadic permutations as neo-

Riemannian transformations and as actions of O.  

                                                
136 See Cohn, Audacious Euphony, 31. 
137 Transcription by Jörg Heuser, Pat Martino: “Joyous Lake” (Mainz: BbArking Munckin Music, 2005), 30-1.  

a 

b 

4 6 

3 

1 

2 

5 

a := (1352) 

b := (1654) 
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Example 33.1. “Joyous Lake,” excerpt 

 

Example 33.2. “Joyous Lake,” triadic analysis 

              RL                          R                     PL                                      PL 

 F
−                                      

A
−                                

C
∆                                   

A
∆     

E
−    

D
∆                               

B
∆      

A
∆
 

   (Hex(0,1), O): a
2
b    (D(∅), O): ab

2
   (Hex(3,4)), O): a

2
b                (Hex(1,2), O): a

2
b 

                                                                           

                                                                           Hexatonic Pole (Hex(3,4), O): a
2
b

3 

 

 

 Martino begins with an F
−
 triad over V

7
/A

−
, (E

7
). He then moves to an A

−
 tonic triad, 

followed by its relative major, C
∆
, that gives way to a Hex related (PL) A

∆
. A hexatonic pole 
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continues hexatonic sonority, transforming A
∆
 ⟼ E

−
 (this hexatonic pole also includes the final 

A
∆
 chord). An interpolated PL transforms D

∆
 ⟼ B

∆
, resides within the hexatonic pole’s 

presentation.  

  Three members of O are in play: a
2
b, ab

2
, and a

2
b

3
. All three permutations belong to a 

single equivalency class called a conjugacy class.
138

  

Definition 21. Conjugacy class 

Let s and t be members of a group G. s and t are conjugate in G (and call t a 

conjugate of s) if xsx
−1

 = t for some x in G. The conjugacy class of s is the set cl(s) 

= {xsx
−1

 | x ∊ G}. Therefore, the conjugacy class of s is the equivalence class of s 

under conjugacy. In other words, conjugacy classes are a means by which to 

partition the group members. Each group member belongs to a single conjugacy 

class.
139

  

  

O contains five conjugacy classes. As to a
2
b, ab

2
, a

2
b

3
, on (Hex(x,y), O) and (D(∅), O), all are 

members of cl(aba).  A Permutational Triadic reading tells us that while Martino utilizes two 

differing scale genres at four differing pitch levels, being acted upon by three permutations in O, 

we can describe the musical event  as a single entity, cl(aba) ∊ O.   

 The next analysis of Kenny Wheeler’s “Ma Belle Hélène,” looks at O acting on a single 

scale genus, the hexatonic. To facilitate the analysis, we return to the technique employed in the 

Goodrick analysis (Analysis 3) of separating triad-over-bass-note structures into segregated 

parts, the bass line and the upper-structure triad. “Ma Belle Hélène” also provides an opportunity 

to apply group actions to a voice-leading scheme, alluding to additional applications of the 

Permutational Triadic Approach.   

 

 

                                                
138 For a listing of conjugacy classes of O, see Appendix D. 
139 Gallian, 395-6. 
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Analysis 9. “Ma Belle Hélène”   

  “Ma Belle Hélène” is a 50-measure composition in AB form with an introduction. 

Except for three chords, the A
sus

 in mm. 22-24, the A
sus

 in m.81, and the D
− 

that acts as a final 

point of arrival, all harmonies take the form of triads-over-bass-notes (as in the Goodrick 

example).
140

 Formal sections A and B share nearly identical harmonies, albeit section B is at T1 

to section A. As such, the present analysis focuses on the A section.
141

  

Example 34. “Ma Belle Hélène,” graphic analysis 

 

The first step in the analysis is to determine if the bass notes are acting as a set-union member 

with the upper structure triad, or if the bass line is an independent musical structure. The latter 

prevails. In the span of mm. 5-21, the bass line projects a descending whole-tone 6
th
 progression. 

One note separates each whole-tone member. The extra note’s function alternates between being 

a descending chromatic passing tone and a pitch related by cycle-5 motion to both the note 

before it and the note after, the latter being reminiscent of an extended dominant pattern.  

                                                
140 On the recording, these sus chords are played as (027) trichords ((A, D, E) and (A, D, E)). Dominant seventh 

sus 9 chords can present as upper structure major triads built on roots a whole-step below the bass note, i.e. G
∆/A. 

For analytical purpose, A sus, the last harmony of the last 3
T
 set is realized an upper structure to show its 

relationship to the first chord of the last 3T set.   
141 Appendix B contains  the lead sheet in the composer’s hand. 
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The introduction of the pitch A, an enharmonically reinterpreted anticipation of the first p.c. in 

the formal B section, breaks the whole-tone projection.  

Upper structure triads are delineated into three 3
T
 sets of order 4, shown with beams in 

Example 34. In each set, the start and end triads are the same. The end chords in the first two sets 

act as 
sub

V dominant-action chords to the start chord of the next set. The group O actions on  

these sets are as follows: set 1= (Hex(3,4), O): (ab)
−1

; set 2 = (Hex(2,3), O): (ab)
−1

; set 3 = (Hex(1,2), 

O): ab. The root motion in sets 1 and 2 takes the form of directed i.c. −4, and in set 3, directed 

i.c. +4. The reason is apparent; the group action (ab)
−1

 on sets 1 and 2 is the inverse of the group 

action (ab) on set 3, thus reversing the directed i.c. direction in p.c. space. 

 Voice leading holds one common tone between each adjacent triad within a set. Define 

the voices as V1 = top voice, V2 = middle voice, and V3 = bottom voice. In sets 1 and 2, the 

permutation of the voices holding the common tone is (312) = C3: r. In set 3 it is (213) = C3: r
−1

. 

This process echoes the inverse relation held by the action of O on the triadic sets. 

 Chord/ scale determination could take the form of set inclusion, where each upper-

structure triad and the associated bass-note combination forms a tetrachord and the scales that 

contain each particular tetrachord as a subset are available chord/scale choices. With this 

approach, we must redefine the chord/scale choice for each change in harmony. The Triadic 

Permutational Approach, on the other hand, allows each set of four triads to take the chord/scale 

that is based on the scale used to define the group. In the present case, that is a hexatonic 

collection for each triadic set. This approach frees the soloist from the abruptly shifting scale 

genres and transpositional levels associated with realizing a separate chord/scale for each triad-

over-bass-note. 



109 

 

There is a mathematical relationship between the hexatonic and octatonic collections 

beyond that of symmetry in chromatic space. The octahedron’s six vertices identify with the six 

sides of a 3-cube: they form a geometric dual, shown in Figure 16. Octatonic set elements = ωn; 

hexatonic set elements = ηn. Therefore, the group used to model the hexatonic collection is 

isomorphic to the group used to model the octatonic collection, although the size of the sets used 

to define the group are of different order, (Hex(x,y), O) ≅ (Oct(x,y), O).   

 

Figure 16. Octahedral dualism 

 

Two group actions generate the rotational symmetry of the cube, (Oct(x,y), O): <g,h>. 

Note that generator g equals the generator a in (Hex(x,y), O) and generator h equals generator b in 

(Hex(x,y), O). 

 

 

 

η1 

η3 

η4 

η5 

η6 

η2 

ω3 

ω8 

ω6 

ω7 

ω5 

ω4 

ω2 ω1 
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Figure 17. (Oct(x,y), O): <g,h> 

 

We now turn to Joe Henderson’s composition “Punjab” to use the geometric duality in a musical 

analysis.   

Analysis 10. “Punjab” 

Joe Henderson’s “Punjab” is an example of a composition where multiple tonic systems 

form the harmonic middle ground.  The eighteen-bar form contains two unique tonic systems 

from the sets Oct(2,3) and Hex(3,4).The sets occupy the following measures, Oct(2,3) =  mm. 1-4 and 

11-1; Hex(3,4) = in mm. 4-11. Example 35 shows the interaction of the two symmetric sets 

graphically. 

 

 

 

 

 

i := (1)(2)(3)(4)(5)(6)(7)(8) 

g := (1357)(2468) 

h := (1287)(3465) 
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Example 35. “Punjab” 

 
Oct(2,3) opens and closes the composition. Because the form is cyclic, the end chords must 

return the music to the top of the form.
142

 This is achieved by the 4
T
 system. Measures 1-4 

contain (D
∆
, B

∆
, A

∆
); mm. 11-1 hold (A

∆
, B

∆
, D

∆
), in which the final D

∆
 represents the 

beginning of a new chorus. Let us consider the set of four major triads in Oct(x,y). Since the orbits 

of triads in “Punjab” are of order 3, there exists a stabilized point, in this case, F
∆
. This group 

action belongs to A4, the alternating group on four elements. To show this mapping, a 

permutation isomorphic reordering of the triads on the cube’s vertices defines the vertices 

according to chord quality.
143

   

Definition 22: Permutation isomorphic 

Two permutation groups, say G ≤ Sym(Ω) [Sn] and H ≤ Sym(Ωˊ) [Snˊ] are called 

permutation isomorphic if there exists a bijection λ : Ω → Ωˊ and a group 

isomorphism ψ : G → H such that    

λ(α
x
) = λ(α)

ψ(x)
 for all α ∊ Ω and x ∊ G. 

Essentially, this means that the groups are “the same” except for the labeling of 

the points.
144

 

 

                                                
142 This refers to the cyclic nature of jazz compositions where the form repeats for solos and the recapitulation of the 

melody. 
143 Symmetric scales do not technically hold to the theory of scale degrees; however, we require the identification of 

pitch level in order to define permutations. For symmetric scale, we adopt carat notation of “scale degrees” 

orientating  ̂  as the pitch lying above, and closest to C = 0.  
144 Dixon and Mortimer, 17. 



112 

 

1 

5 

7 8 

6 

2 

4 3 

     {    ̂
 
      ̂

 
            ̂

 
 ;     {    ̂

 
     ̂

 
            ̂

 
 . The 

Oct(1,2) ordering is as follows: Oct(2,3) := (1 = D
Δ
, 4 = F

Δ
, 5 = A

Δ
, 8 = B

Δ
)(2 = D

−
, 3 = F

−
, 6 = 

A
−
, 7=B

−
). Two tetrahedra inscribed within a cube depict A4 ⊲ (Oct(x,y), O) geometrically.  

 

 

 

 

 

 

 

 

 

Figure 18. Geometric modeling of A4  ⊲ (Oct(1,2), O) 

 

Table 4. Alternating group A4  ⊲ (Oct(1,2), O). 

 

 
x ∊ O 

 Triadic 

Permutation 

 Triadic 

Permutation 

 i i () i () 

  
  
  
  
  
  
  
  

G
ro

u
p
 M

em
b
er

 

g
−1

h γ(1,6) = (1)(485) (D
Δ
)(F

Δ
,B

Δ
,A

Δ
) δ(1,6) = (6) (273) (A

−
)(D

−
,B

−
,F

−
) 

(g
−1

h)
−1

 γ(1,6)
−1

 = (1)(458) (D
Δ
)(F

Δ
,A

Δ
,B

Δ
) δ(1,6)

−1
 = (6) (237) (A

−
)(D

−
,F

−
,B

−
) 

(gh
−1

)
−1

 γ(4,7) = (4)(185) (F
Δ
)(D

Δ
, B

Δ
,A

Δ
) δ(4,7) = (7)(263) (B

−
)(D

−
,A

−
, F

−
) 

gh
−1

 γ(4,7)
−1

 = (4)(158)  (F
Δ
)(D

Δ
,A

Δ
,B

Δ
) δ(4,7)

−1
 = (7)(236) (B

−
)(D

−
,F

−
,A

−
) 

gh γ(8,3) = (8)(145) (B
Δ
)(D

Δ
,F

Δ
,A

Δ
) δ(8,3) = (3)(267) (F

−
)(D

−
,A

−
, B

−
) 

(gh)
−1

 γ(8,3)
−1

 = (8)(154) (B
Δ
)(D

Δ
,A

Δ
,F

Δ
) δ(8,3)

−1
 = (3)(276) (F

−
)( D

−
,B

−
,A

−
) 

hg γ(5,2) = (5)(148) (A
Δ
)(D

Δ
,F

Δ
,B

Δ
) δ(5,2) = (2)(367) (D

−
)(F

−
,A

−
,B

−
) 

(hg)
−1

 γ(5,2)
−1

 = (5)(184) (A
Δ
)(D

Δ
,B

Δ
,F

Δ
) δ(5,2)

−1
 = (2)(376) (D

−
)( F

−
,B

−
,A

−
) 

(h
g
)

2
 π1 = (14)(85) (D

Δ
,F

Δ
)( B

Δ
,A

Δ
) ρ1 = (23)(67) (D

−
,F

−
)( A

−
,B

−
) 

h
2
 π2 = (18)(45) (D

Δ
, B

Δ
)(F

Δ
,A

Δ
) ρ2 = (27)(36) (D

−
,B

−
)(F

−
,A

−
) 

g
2
 π3 = (15)(48) (D

Δ
,A

Δ
)(F

Δ
,B

Δ
) ρ3 = (26)(37) (D

−
,A

−
)(F

−
,B

−
) 
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The A4 permutations in “Punjab” are: mm. 1-4 = γ(4,7), and mm. 11-1 = γ(4,7)
−1

. Note the harmonic 

palindrome generated by the inversional relationship, (D
∆
,B

∆
,A

∆
),(A

∆
,B

∆
,D

∆
), among members 

of Oct(2,3).  

An exchange, (A
∆
,E

∆
), (Hex(3,4), O): aba separates the two Oct(2,3) statements, thus 

defining “Punjab’s” global group action,     (   ), a conjugation agreeing with 

(γ(4,7))(aba)(γ(4,7)
−1

). The A
∆
 chord plays an interesting role. It belongs to both Oct(2,3) and 

Hex(3,4) and acts as a pivot chord between the hexatonic and octatonic collections. The remaining 

harmonies act as either dominant-action chords, which are foreground embellishments of the 

tonic system middle ground, or act as members of the turnaround IV
∆
—V

∆
—VII

∆
 [model 

interchange]—I
∆
 in mm. 17-1 (the use of measure 1, signifies the return to the top of the form).  

A discussion of the octahedral full symmetry group, Oh, closes this subsection. As with 

the previous dihedral groups, the full symmetry group of the octahedron and the full symmetry 

group of the cube can be generated by a set of rotations and a reflection. Oh has the 

representation, 

<abc | a
4
 = b

3
 = c

2
 = abc>. 

Group Oh is of order 48, and is isomorphic to S4 × C2. The figures below show Oh as 

symmetries of the octahedron and of the cube. The reflection is through the point of origin in 

both figures. Appendix D.6-7 contains a list of permutations generated by reflection for  

(Hex(3,4), Oh) and (Oct(0,1), Oh).  
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Figure 19.1. Octahedral full symmetry group, tetrahedron 

 

 
 

 

Figure 19.2. Octahedral full symmetry group, cube     
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3.5. Symmetries on 5 and 7 Elements: p-groups 

Scales modeled as five elements include real melodic minor 5 (M+) and harmonic major 

(HM). The double harmonic 5 (DH+) requires seven elements. Groups of prime order, or 

powers of primes are called p-groups and have as subgroups only the trivial subgroup (i) and the 

whole group itself, when working in Euclidian space.
145

 Available groups to illustrate p-groups 

are C5, C7, and the addition of a reflection to each of these groups to make their dihedral 

extensions. The latter relies the semidirect product Cn ⋊ C2 ≅ D2n to generate D10 and D14, 

shown in the following examples. 

 

                                                
145 See, Gallian, 396-7; Moore, 123-7. 
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Figure 20. Pentagonal full symmetry group ≅ D10 

 

 

 

r 

2 

3 4 

1 

5 

C5 

i := (1)(2)(3)(4)(5) 

r := (12345) 

r
2
 := (13524) 

r
3
 := (14253) 

r
−1

 := (15432) 

D10 = <C5, fx ∊ f(a…e)> 

a := (25)(34) 

b := (13)(54) 

c := (15)(24) 

d := (12)(53) 

e := (14)(23) 

e 

c 

b 

a 

d 
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Figure 21. Septagonal full symmetry group  

r 

7 

6 

5 4 

3 

2 

1 

a 
b 

c 

d 

e 

f 

g 

C7 

i := (1)(2)(3)(4)(5)(6)(7) 

r := (1234567) 

r
2
 := (1357246) 

r
3
 := (1473625) 

r
4
 := (1526374) 

r
5
 := (1642753) 

r
6 

:= (1765432) 

D14 = <C7, fx ∊ f(a…g)> 

a := (27)(36)(45) 

b := (13)(47)(56) 

c := (15)(24)(67) 

d := (17)(26)(35) 

e := (12)(37)(46) 

f := (14)(23)(57) 
g := (16)(25)(34)  
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CHAPTER 4.  APPLICATION 

4.1. p-group Application 

To illustrate the use of  p-groups, we turn to two examples that use sets of cardinality five 

(real melodic minor #5, M+) and cardinality seven (double harmonic #5, DH+) to increase the 

amount of altered tensions for a given class of functional harmony. While the focus here is on 

collections that support p-groups, the steps by which to increase harmonic tension apply to any 

functional harmony class. 

 First consider the functional harmony class of  
sub

V
7
/X. 

sub
V

7
 chords take Lydian 7 as 

their parent chord/scale, and thus usually carry {9, 11, 13} as available tensions. To include 9 

as an altered tension, we consult appendix A.2.1 and find that the harmony built on the fourth 

scale degree of RM+ forms a dominant seventh 9, 11, 13 chord. Let us assume the key of G 

major where we will work with F
7
, 

sub
V

7
/VI

−7
, with the chord/scale choice of RM+(0), which 

generates the set {1 = D−, 2 = F
∆
, 3 = F

−
, 4 = G

∆
, 5 = G

−
}, the constituent consonant triads. 

Example 36 shows one possibility of  RM+ over a 
sub

V
7
 that incorporates Garzone’s approach  

(forbidding invariant triadic inversional position). The permutation is (RM+, C5): r
3
. 

Example 36. (RM+(0), C5): r
3
 over 

sub
V

7
/VI

−7
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For the second example, let us increase the amount of altered tensions through double 

modal interchange. Retain the assumption of the key of G major and reharmonize E
−7

 = III
−7

 as 

III
∆7

, a chord borrowed from the parallel Aeolian. The parent chord/scale choice for III
∆7

 is 

Lydian, providing available tensions 9, 11. We could now choose to invoke melodic minor 

(M(2)) to change the quality to major seventh 5. If the double harmonic 5 scale is the 

chord/scale choice, we obtain a major seventh 9, 13 chord (built on the sixth scale degree, see 

appendix A.2.5). 13 can be enharmonically reinterpreted as 5 allowing the musician to toggle 

between the natural and altered image of the chordal fifth. Define the set of constituent 

consonant triads from DH+(6) as {1 = G
∆
, 2 = G

−
, 3 = B

∆
, 4 = B

∆
, 5 = B

−
, 6 = E

∆
, 7 = E

−
}. 

Example 37 shows a possible superimposition over an altered III
∆7

 acting as a double modal 

interchange chord for III
−7

. The permutation is (DH+(6), C7): r
2
. 

Example 37. (DH+(6), C7): r
2
 acting over III

∆7 6   

 

 

4.2. 3
T
 Systems Revisited  

 To model triadic permutations over a standard but unique chord progression, we consider 

the 3
T
 system derived from  Hex(2,3), the same tonic system found in “Giant Steps.” The musical 

goal is to identify additional intervallic root motion schemes that work in concert with the 3
T
 

system. Major triads from Hex(2,3) and their primary dominants form two distinct sets, H:= 
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{G
∆
,E

∆
,B

∆
} and J := {D

7
,B

7
,F

7
}. With regard to chord/scale determination, we assign Lydian 

to each major triad in H; octatonic and diminished whole tone for each dominant seventh chord 

in J, and draw from the groups (D(n), O), (Oct(x,y), O), and (M(x), D8).
146

   

 A group action on H is considered first. (D(2), O): (ab)
−1

 produces two orbits of order 

3, (143)(256). The second orbit is of interest here. It presents musically as (F
−
, B

−
, E

−
), defined 

as set Q
[1]

 : = {F
−
, B

−
, E

−
}. Let us use this permutation over each major triad in H, adjusting the 

pitch level accordingly to produce a unique Lydian scale over each member of H.  For any x in 

H, there are three available minor triads, built on the 3
rd

, 6
th
 and 7

th
 of each member of H. 

Therefore, there are three copies of Q. We show the relation 
    

     
 as some copy of Q over some 

member of H. Example 38 lists the triads obtained from the group action (D(2), O): (ab)
−1

.  

Example 38. 
    

     
 

 

(D(2), O): (ab)
−1

 (D(2), O): (ab)
−1

 (D(6), O): (ab)
−1

 

 
    

     
 := {

 
       

   }; 
    

     
:= {

        

 
 }; 

    

     
 := {

 
   

   
 

  }. 

 

  Members of Q
[n]

 belong to the neo-Riemannian group. Consider Q
[1]

 :=    
 
→    ; 

   
 
→   . The minor triad built on the 7

th
 above x ∊ H obtains via conjugation of two neo-

Riemannian transformations, R
L
 :=     

   

→     
 
→    

 
→   .  Taken as a set union, the three 

minor triads attain a two-sharp diatonic, equating to G Lydian, the Parent Scale in Russell’s 

                                                
146 This will impose tensions (9, 11) over the major chords and (9, 9, 11, 13) over the dominant seventh chords 

for octatonic and (9, 9, 5, 13) for diminished whole tone. 
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Lydian Chromatic Approach. Lydian, as a chord scale choice for major triads (and major seventh 

chords) within tonic systems, is also advocated by Nettles and Graf.
147

  

 For the dominant harmony, let the set N := {major triads ∊ Oct(x,y)}. We shall work 

with three copies of N
[n]

. Example 39 lists the triads obtained from group action (Oct(x,y), O): g. 

Example 39. 
    

      
  

                               (Oct(2,3), O): g             (Oct(1,2), O): g             (Oct(0,1), O): g 

    

      
 := {

       
    

   }; 
    

      
 := {

 
   

       

 
 }; 

    

     
 := {

 
         

 

 
 }, 

 

The choice for invariant major parity is to accentuate the aural experience of a dominant chord’s 

dichroic relationship with its target chord. Mathematically, we define the mapping of a dominant 

to its target chord as C2. Note that C2, the smallest cyclic group has but two members, i, and (12). 

The (12) exchange explains dominant → target chord motion, as (1 → 2), where 1 = dominant 

harmony and 2 = target chord harmony. Back relating dominant motion is simply the inverse, 

represented as (2 → 1), symbolizing target chord → dominant motion.  

 Toroidal polygons are topologically modified tori that represent polygons with holes.
148

 

The use of tori has roots in neo-Riemannian theory, wherein the Tonnetz forms a discrete lattice 

on a torus. The torus has a single face, shown as F in Figure 22, two edges, shown as E1 and E2, 

and vertices that lay at any E1 and E2 intersection. The torus is the product of two orthogonal 

circles and is therefore cylindrical. There are two distinct paths of motion around a torus: toroidal 

direction, which is motion about E1, and the poloidal direction, which is motion about E2. A 

composition of poloidal and toroidal directions produce a diagonal motion across the torus’s 

face.    

                                                
147 Nettles and Graf, 164. 
148 Stephen Barr, Experiments in Topology (New York, Dover Publications, 1964) 17-8. 
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Figure 22. Torus 

  

Thus far, we have studied n-gons, shapes in two dimensions and n-hedra, certain regular 

Platonic solids. Regarding regular polyhedra, Leonhard Euler’s theorem states,  

F−E+V = 2. 

That is, the number of faces less the number of edges plus the number of vertices = 2. This 

theorem breaks down when applied to tori or doubly connected surfaces such as toroidal 

polygons; therefore, we modify Euler’s theorem, using the equation F−E+V = 0.
149

 Agreeing 

with the modified theorem, the “dominant” toroidal polygon, in the left position of Figure 23 

holds 12F – 24E + 12V = 0, and the 3
T
 toroidal polygon, in the right position holds 9F – 18E + 

9V = 0.  Figure 23  is a geometric representation of the group,  

B :=((  
 ⋊   )  (   

  ⋊    )     )) 

                                                
149

 See, B.M.Stewart,  Adventures Among the Toroids: A Study of Orientable Polyhedra with Regular Faces, 2nd ed. 

(Okemos, MI.: B.M. Stewart, 1980). 

 

F E2 

E1 

V 
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where   
  ⋊    acts on 

    

      
  and   

  ⋊     acts on 
    

     
 . C2 generates the dominant-action/3

T
 

target chord alternation. 
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Figure 23. Toroidal polygon
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∆
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∆
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 Define the group W := (H, C3) (stated harmony) and X := (J, C3) (dominant-action 

chords). Both of which are generated by counterclockwise toroidal motion about the toroidal 

polygons.  Define the groups Y := (Q
[n]

,   
 ) (this includes the neo-Riemannian transformations 

R, L, R
L
) and Z := (N

[n]
,   

 ) (triads from Oct(x,y)), generated by poloidal motion.  

  Point coordinates (j,k) show triadic mappings. The first coordinate represents poloidal 

motion; the second coordinate shows toroidal direction. As the 3
T
 harmony progresses, it is 

possible to move from any (j,k) to any other subsequent (j,k) in the adjacent modular space. For 

example, if we start at F
−
, (0,0), in G

∆
 modular space, and intend to stay in that space, we can 

move to B
−
(1,0) or E

−
(2,0). If we intend to move to E

∆
 modular space, the triad following 

F
−
may be any triad that is contained in E

∆
 modular space, D

− 
: (0,1),  G

− 
: (1,1),   C

− 
: (2,1). As 

with the torus, the product of toroidal and poloidal direction produces a diagonal motion across 

the toroidal polygon’s face.  

    We now turn to the presentation of toroidal polygons as Cayley digraphs (a directed 

graph), which orientate the toroidal polygons on a two-dimensional plane. With the Cayley 

graph, the intervallic relationships between elements of  
    

     
 and  

    

     
  are more easily 

comprehended.     

Definition 23. Cayley diagraph 

Let G be a finite group and S a set of generators for G. We define a digraph 

Cay(S:G), called the Cayley digraph of G with generating set S, as follows. 

1. Each element of G is a vertex of Cay(S:G).  

2. For x and y in G, there is arc from x to y if and only if xs = y for some s ∊ S.
150

 

 

 In the following Cayley digraphs, stated harmony lays on the x axis, and motion along the 

x axis is toroidal direction. The superimposed triads lay on the y axis and motion along the y axis 

                                                
150 A digraph is a finite set of points, called vertices, and a set of connectors, called arcs, connecting some of the 

vertices. See Gallian, 497-515. 



 

 

126 

 

is poloidal motion. Triads are plotted the digraph’s vertices and arcs represent the intervallic 

relationships, given in directed interval classes below each graph. Remember, the product of a 

move involving the x and y axes produce a diagonal motion across the <x,y> plane. 

Example 40.1. 
    

     
  ≅    

       digraph       

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x ∊ 3
T
     G

∆
                               E

∆     
                             B

∆
                              G

∆
 

     R
L
     F

−
                                D

−
                                A

−
                             F

−
 

                (0,0)                                    (0,1)                                     (0,2)                                  (0,0) 

 

 

 

     L       B
−
                                G

−
                                 D

−
                             B

−
 

             (1,0)                                    (1,1)                                     (1,2)                                  (1,0) 

 

 

 

     R       E
−
                                C

−
                                G

−
                               E

−
 

             (2,0)                                    (2,1)                                     (2,2)                                  (2,0)                            

           

              F
−
                                D

−
                                A

−
                              F

−
 

             (0,0)                                     (0,1)                                    (0,2)                                  (0,0) 

 

                                      = i.c. +1 

 = i.c. +2 

 = i.c. −2  

 = i.c. +3  

 = i.c. −4  

 = i.c. +5  

 = i.c. ±6  

 



 

 

127 

 

Example 40.2. 
    

     
 ≅   

       digraph
151

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 The choice of octatonic and diminished whole tone for the primary dominant-action 

harmony provides for an altered dominant sonority. The increased chromaticism of an altered 

                                                
151 This is an example of a Hamiltonian circuit (or Hamiltonian cycle) where the path forms a cycle that visits each 

vertex exactly once and returns to the start vertex. While a detailed study of Hamiltonian cycles is beyond the scope 

of this dissertation, they have recently received attention in the literature. See, Giovanni Albini and Samuele 

Antonini investigates Hamiltonian cycles in the topological dual of the Tonnetz (i.e. the successions of triads 

connected only through PLR transformations which visit every minor and major triad only once). See Giovanni 

Albini and Samuele Antonini, “Hamiltonian Cycles in the Topological Dual of the Tonnetz,” in Mathematics and 

Computation in Music: Second International Conference, MCM 2009, New Haven, CT., USA, June 19-22, 2009, 

Proceedings, eds. Elaine Chew, Adrian Childs, and Ching-Hua Chuan, 1-10 (Berlin: Springer-Verlag, 2009). 

 

V
7
/x ∊ J        D

7
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7
                 

                      D
∆
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∆
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∆
                            D

∆
              

                         (0,0)                               (0,1)                                (0,2)                               (0,0) 

 

 

                      F
∆
                           D

∆
                            A

∆
                            F

∆
                       

                         (1,0)                              (1,1)                                 (1,2)                               (1,0) 

 

 

                      A
∆
                          E

∆
                             C

∆
                           A

∆
 

                           (2,0)                             (2,1)                                (2,2)                                (2,0) 

 

 

                       B
∆
                           G

∆
                            D

∆
                            B

∆
 

                       (3,0)                             (3,1)                                (3,2)                                (3,0)                                              
                         

                              = i.c. −1  

                            = i.c. +2                                                                  

                            = i.c. +3                                                        

                            = i.c. −4  

                            = i.c. +5 
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primary dominant strengthens the aural relationship between dominant/tonic key areas because 

the altered tensions (and chord tones) set the dominant further apart from the tonic (or from the 

intended chord of resolution, whichever the case may be).
152

 If we were to provide for an 

unaltered dominant, the chord/scale choice would be Mixolydian, a modal representation of the 

diatonic. The choice of an unaltered dominant results in an invariant scale genus in both key 

areas (dominant and tonic), a representation of the dominant/tonic effect in its most basic form. 

To further strengthen the dominant/tonic experience through chromaticism, the dominant-action 

chord/scale choice of diminished whole-tone (seventh mode of the real melodic minor) provides 

for three altered tensions and one altered chord tone (9, 9, 5, 13). Diminished whole tone 

provides a differing scale genre for the dominant-action chord.          
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sub

V
7
 chords take Lydian 7 as a chord scale and have (9, 11, 13) as tensions. 

sub
V/

7
 chords are rarely altered 

beyond the 11 because altering the ninth or thirteenth pulls the chord toward the unaltered primary dominant by 

introducing either a chord tone or unaltered tension belonging to the unaltered dominant.  
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Example 40.3. 
 ( )

     
 ≅   

       diagraph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 The following examples illustrate musical applications for  

B := ((  
 ⋊   )  (   

  ⋊   )     )). The first two examples address a traditional musical 

technique, that of the neighbor-tone. Example 41.1 builds on the idea of the neighbor-tone by 

approaching some member of Q
[n]

 by some member of M(x).  

V
7
/x ∊ J    D

7
                            B

7     
                         F

7
                          D

7
                 

                  E
−
                            B

−
                             G

− 
                         E

−
              

                     (0,0)                                (0,1)                                (0,2)                             (0,0) 

 

 

                   F
−
                             D

−
                            A

−
                          F

−
                       

                     (1,0)                                (1,1)                                (1,2)                             (1,0) 

 

 

                  A
∆
                            E

∆
                             C

∆
                          A

∆
 

                      (2,0)                                (2,1)                                (2,2)                             (2,0) 

 

 

                   B
∆
                           G

∆
                             D

∆
                         B

∆
 

                     (3,0)                                 (3,1)                                 (3,2)                            (3,0) 

                                         

                   E
−
                            B

−
                             G

− 
                         E

−
              

                      (0,0)                                (0,1)                                (0,2)                             (0,0) 

   = i.c. +1 

 = i.c. −1 

 = i.c. +2 

 = i.c. −2 

 = i.c. +3 

 = i.c. +4 

 =  i.c.+5 

 = i.c. ±6 
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Example 41.1. Incomplete lower neighbor motion  

 
 

 

 

 

 

 

 

 

Each member of H contains the  neo-Riemannian transformation R; therefore, a reiteration of 3
T
 

root motion. The same holds for the dominant chords. Each dominant chord carries a minor triad 

at T1, also reiterating 3
T
 root motion. 

 The next example displays a more complex neighbor-motion, the enclosure around the 

final triad. This enclosure is preceded by a descending whole-tone descent reminiscent of the 

whole-tone bass line played during the head of “Giant Steps.”    

 

 

 

 

 

 

 

 

 

Set 
 ∊  ( )

   
 

  ∊      

    
 

 ∊  (  )

   
 

  ∊       

   
 

 ∊  ( )

   
 

 ∊      

   
 

Triad E
−
 E

−
 B

−
 C

−
 G

−
 G

−
 

Analysis V
7
/G

∆
 ∊ 3

T
 V

7
/E

∆
 ∊ 3

T
 V

7
/B

∆
 ∊ 3

T
 

Stated 

Harmony 
D

7
 G

∆
 B

7
 E

∆
 F

7
 B

∆
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Example 41.2. Whole-tone descent followed by an enclosure around G
−
 

 

 

 

 Example 42.1 expresses this musically as a set of triads with roots that form two 

interlocking (012) trichords.
153

. The minor triads (B
−
, B

−
, A

−
) over members of J obtain from the 

(j,k) mapping, (3,0) → (0,1) → (1,2). The 3
T
 harmonies use all three neo-Riemannian 

transformations in Q, expressed with the (j,k) mapping, (0,0) → (1,1) → (2,2), which obtains 

 (F
−
, G

−
, G

−
) over members of H.  

 

 

 

 

 

                                                
153

 Accepting parity equivalence, Example 40.2 also serves to model the minor triads contained in the octatonic, 

which represents the chord/scale choice for the dominant-action chords. The graph’s pitch designations remain the 

same, parity is changed to minor. 

Set 
 ∊    (   )

   
 

   ∊      

   
 

  ∊    (   )

   
 

  ∊     

   
 

 ∊  ( )

   
 

 ∊  ( )

   
 

 ∊      

    
 

Triad A
−
 F

−
 E

−
 D

−
 G

−
 A

−
 G

−
 

Analysis V
7
/G

∆
 ∊ 3

T
 V

7
/E

∆
 ∊ 3

T
 V

7
/B

∆ ∊ 3
T
 

Stated 

Harmony 
D

7
 G

∆
 B

7
 E

∆
 F

7
 B

∆
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Example 42.1. Interlocking (012) trichords 

 
 

 

 

 

 

 

 

Example 41.2 displays triads with roots forming interlocking (036) trichords. The neighbor-

action remains in the choice of sets among members of H and J. The background permutational 

scheme relates each M(n) generated set over J by n ∙ 4. Regarding the neo-Riemannian 

transformations Q
[n]

 over members of H: R, is followed by L, which closes on the conjugation 

R
L
.   

 

 

 

 

 

 

Set 
 ∊    (   )

   
 

   ∊      

   
 

 ∊    (   )

   
 

 ∊      

    
 

 ∊    (   )

   
 

 ∊      

    
 

Triad B
−
 F

−
 B

−
 G

−
 A

−
 G

−
 

Analysis V
7
/G

∆
 ∊ 3

T
 V

7
/E

∆
 ∊ 3

T
 V

7
/B

∆
 ∊ 3

T
 

Stated 

Harmony 
D

7
 G

∆
 B

7
 E

∆
 F

7
 B

∆
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Example 41.2. Interlocked (036) trichords 

 

 

 

 

 

 

 

 

 

 

 

 

Set 
 ∊  ( )

   
 

  ∊      

   
 

 ∊  (  )

   
 

 ∊      

    
 

 ∊  ( )

   
 

  ∊      

    
 

Triad E
−
 E

−
 F

∆
 G

−
 A

−
 A

−
 

Analysis V
7
/G

∆
 ∊ 3

T
 V

7
/E

∆
 ∊ 3

T
 V

7
/B

∆
 ∊ 3

T
 

Stated 

Harmony 
D

7
 G

∆
 B

7
 E

∆
 F

7
 B

∆
 



 

 

134 

 

 

CHAPTER 5.  CONCLUSIONS AND ADDITIONAL RESEARCH 

5.1. Conclusions  

 The Permutational Triadic Approach offers a syntactic theory to address non-traditional 

uses of triads. The theory acts as descriptively: it incorporates permutation group theory to 

organize triads, and represents the resulting group actions geometrically. These representations 

demonstrate abstract algebraic structures on a familiar geometric objects, offering the musician a 

tool by which to conceptualize underlying mathematical groups. In other words, it provides the 

musician with a visual template. The number of specific geometric elements in the shape, e.g., 

vertices, edges, faces, helps determine what groups can model a particular set of musical objects, 

based on the set’s cardinality. From the descriptive view, the theory offers an analytical 

technique encompassing functional harmony and the chord/scale relationship in a manner 

previously unexplored in jazz theory. We can now organize triadic permutations according to the 

group actions that generate them, and identify other triadic permutations that relate under group 

actions. These relations include permutations that belong to the same subgroup, that share an 

equivalence relation (for example, conjugacy class), or are members of a group product.  

The theory is also prescriptive, having compositional and improvisational uses. The 

prescriptive aspect also carries with it new pedagogical implications wherein the systematic 

approach to triadic permutation acts as a medium through which teachers, students, and fellow 

musicians can communicate.     
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5.2. Additional Musical Applications          

 Many of the above mathematical concepts could serve as a topic for additional study. 

Any of the various mathematical groups might form the basis for an investigation into the 

repertoire; topics such as cyclic groups in jazz, dihedral groups in post-Coltraneian harmony, or 

occurrences of triadic permutations based on the alternating group acting as a subgroup of the 

octahedral symmetry group in tonic systems come to mind.  Direct products and semidirect 

products were a reoccurring theme in many of the analyses. As such, it is possible to undertake a 

study limited to the identification and explanation of these and other group products in jazz 

compositions, arrangements, and improvisations.     

Set composites are another topic that warrants further investigation. Set composites are 

redefined sets where a permutation group models triads from more than one scale genre. For 

example, consider the altered V
7
 in the key of C major, G

7 alt
. Oct(1,2) and G diminished whole-

tone are two possible chord/scale partners that generate the triad pairs {(B
∆
, E

∆
) ∊ Oct(1,2), (D

∆
, 

E
∆
) ∊ M(8)}. The set union of the four triads attains a scale-like collection {1,2,3,4,5,7,8,10,11}, 

which is not in the scale roster. Define the set containing these four triads and model that set on 

C4, D8, V4, and A4 for use over G
7 alt

. Likewise, C
∆75 takes Lydian augmented and  Hex(3,4) as two 

possible chord/scale partners. From these two scales define the set  

{(B
−
, A

−
) ∊ M(9), (A

−
, E

∆
) ∊ Hex(3,4)}, whose set union attains {0,2,3,4,6,8,9}, also a scale-like 

collection not found in the scale roster. For example, in the case of C
∆75, take the cyclic 

permutation (A
−
, A

−
, B

−
, E

∆
), where A

−
 acts a lower neighbor to A

−
, and B

−
 acts a modally 

inflected dominant of E
∆
.    
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Set generators in this study were limited to the collections listed in the scale roster. This 

fact does not mean that the blues scale and the be-bop scales cannot serve as set generators. They 

can, in fact, as was touched upon in the Charlie Parker Example 1.13. Michael Brecker uses a 

similar technique in his solo on “El Niño,”
 154

 wherein he plays (G
−
, D

∆
, C

∆
, D

−
). This set union 

produces the scale collection (G, A, B, C, D, E, F, F), which is either a Dorian bebop scale, or a 

blues scale influenced dominant bebop scale through the inclusion of the blue note  ̂, depending 

on the reading. 

Example 43. “El Niño,” excerpt   

 

A final word regarding set definition and set cardinality expansion: in regard to the 3
T
 chords 

(G
∆
, E

∆
, B

∆
), the three minor triads derived from a single permutation discussed in the 3

T
 

revisited section, each of these triads could be expanded into minor pentatonic scales without 

introducing avoid tones. Moreover, the minor pentatonic scales could be embellished by adding 

 ̂, thus turning them into blues scales. Further study into the expansion of triads obtained by 

group actions into pentatonic collections that are based on the fundamental triadic structure is 

worthwhile.  

                                                
154 Michael Brecker, The Michael Brecker Collection, transcribed by Carl Coan (Milwaukee: Hal Leonard, n.d.), 53. 
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5.3. Additional Mathematical Questions 

This dissertation focused on 2-dimentional polygons and platonic solids in 3-dimensional 

Euclidian space to model rotational and dihedral groups. There is a wealth of other groups that 

can model the sets defined here. One of which is the symmetry group of the Fano plane, the 

smallest projective plane to address sets of order seven. 

 

Figure 24. Fano plane 

 

The Fano plane has been studied in musical contexts by others, such as Carlton Gamer and 

Robin Wilson, who use it to investigate geometric duality and the division of the octave into 

units other than twelve to facilitate microtonal compositions.
155

 Their work offers an analysis of 

Gamer’s  Fanovar, a composition governed by the Fano plane’s structure (but not its 

symmetries). David Lewin demonstrates how aspects of the Fano plane’s geometry can be 

                                                
155

 Carlton Gamer and Robin Wilson, “Microtones and Projective Planes,” in Music and Mathematics: From 

Pythagoras to Fractals, ed. John Fauvel, Raymond Flood and Robin Wilson, 149-61(Oxford: Oxford University 

Press, 2003). 

X
7
 

X
6
 

X
1
 

X
4
 

X
2
 

X
5
 

X
3
 

http://en.wikipedia.org/wiki/File:Fano_plane.svg
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projected compositionally over a cantus firmus.
156

 In the course of his discussion, Lewin 

describes group generators for the Fano plane’s symmetry group, and offers numerous group 

actions as components of musical examples. Given that it is possible to model a set of degree 7 

on the Fano plane’s seven elements, the Fano plane’s symmetry group can help ameliorate the 

order-7 p-group limitation to cyclic groups.
157

     

 Robert Peck, in an unpublished response to Jack Douthett’s “Filtered Point-Symmetry 

and Dynamical Voice-Leading,”
158

 states, “each of the seven projective lines in the Fano plane 

may model the [non-commutative] multiplication scheme of Hamilton’s quaternions…the order 

eight group of the quaternions [written Q8],” and provides a coinciding operation to David 

Lewin’s Q relations.
159

 

Example 44. Lewin’s Q3 operation on S := Oct(0,1)
160

  

S := {0,1,3,4,6,7,9,10} 

Q3 := (0,3,6,9)(1,10,7,4) 

 

                                                
156

 David Lewin, “Some Compositional Uses of Projective Geometry,” Perspectives of New Music 42, no.2 (2004): 

12-63. 

157 The symmetry group of the Fano plane is of order 168. One way to reduce the number of group actions to be 

considered is to use subgroups. It would be beneficial to derive the subgroups from the Fano plane symmetry group 

using a group structure already introduced in this document. There exist two subgroups of the Fano plane group that 

are isomorphic to the group O. Further study entails investigating these subgroups, as well as the other subgroups 

that are conjugate to them in the Fano plane group.      
158  Jack Douthett, “Filtered Point-Symmetry and Dynamical Voice-Leading,” in Music Theory and Mathematics: 

Chords, Collections and Transformations, ed. Jack Douthett, Martha M. Hyde, Charles J. Smith, 72-106 (Rochester: 

University of Rochester Press, 2008). 
159 Robert Peck, “A Response to Jack Douthett’s ‘Filtered Point-Symmetry and Dynamical Voice-Leading’” 

(conference on Musical Systems in Memory of John Clough, University of Chicago, Chicago, IL, July 8, 2005): 2-4. 

Peck further develops this concept in “Imaginary Transformations.”  Journal of Mathematics and Music 4, no. 3 

(2010): 157-71. 

160
 David Lewin, Generalized Musical Intervals and Transformations, (Oxford: Oxford University Press, 2007): 

251-3.  
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Redefine S = pitch classes in Oct(0,1) as T = the consonant triads in Oct(0,1), 

x ∊ S y ∊ T 

0 1 := ({0,4,7} = C
∆
) 

1 2 := ({0,3,7} = C
−
)  

3 3 := ({3,7,10} = E
∆
) 

4 4 := ({3,6,10} = E
−
) 

6 5 := ({6,10,1} = F
∆
) 

7 6 := ({6,9,1} = F
−
) 

9 7 := ({9,1,4} = A
∆
) 

10 8 := ({9,0,1} = A
−
) 

 

Q3 acting on Oct(0,1) produces (C
∆
, E

∆
, F

∆
, A

∆
)(C

−
, A

−
, F

−
, E

−
), in cyclic notation using the 

numeration from T, which corresponds to the integer assignment used previously in the section 

on octahedral symmetry, (1,3,5,7)(2,8,6,4). This is a permutation that certainly exists in S8, but is 

not found in groups D16, O, or Oh that were covered in this study. Instead, the permutation is a 

member of (Oct(0,1), Q8); therefore, Q8 offers another avenue to investigate permutations on the 

set of consonant triads contained in an octatonic collection.
161

  

 Garzone’s Triadic Chromatic Approach allows for any triad to follow any other triad 

regardless of quality, meaning consonant and dissonant triads are available. Campbell and 

Weiskopf also employ consonant and dissonant triads in their work.  A full triadic representation 

of any scale in the roster presented in this document would of course need to include dissonant 

triads. To apply such expanded set definitions, take the set’s cardinality to find the appropriate 

geometric model to identify the corresponding group structure. In the case of the diatonic (of 

degree 7), this determination means that the geometric model must change to accommodate a 

                                                
161 The octahedral group acting on the eight consonant triads in Oct(x,y) has a subgroup of order eight that contains 

members of the T/I group. Members of this subgroup commute with eight members of S8: {i ⇔ i},                           

{g := (1,3,5,7)(2,4,6,8) ⇔ Q3 := (1,3,5,7)(2,8,6,4)}, {g2 := (15)(26)(37)(48) ⇔ Q6 := (15)(26)(37)(48)},               

{g−1
 := (1753)(2864) ⇔ Q9 := (1753)(2468)}, {g−1h2

 := (12)(38)(47)(56) ⇔ X1 := (12)(38)(47)(56)},                  

{(hg)2 := (14)(23)(58)(67) ⇔ X3 := (14)(23)(58)(67)}, {gh2 := (16)(25)(34)(78) ⇔ X5 := (16)(25)(34)(78)},           

{h2 := (18)(27)(36)(45) ⇔ X7 := (18)(27)(36)(45)}.  
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degree 7 p-group, allowing C7 and D14 (or alternatively, the Fano plane) as group possibilities. 

The hexatonic collection is not required to shift to a different geometric model for full triadic 

representation. This symmetric scale contains six consonant triads and two augmented triads, 

totaling eight triads. The octahedron was previously used to model the hexatonic, wherein triads 

were placed on vertices. Given that the octahedron has six vertices, twelve edges and eight faces, 

we need not leave the octahedron.  Instead, by invoking geometric duality (with the cube), we 

can model the full set of triads on the octagon’s eight faces. This does not hold for the octatonic, 

which contains eight consonant triads and eight dissonant triads, totaling sixteen triads. To model 

a set of degree 16, the hyper-cube or tesseract is a possibility. The hyper-cube, which has sixteen 

vertices, is isomorphic to the symmetry group O × C2  in four dimensions.    

 The Permutational Triadic Approach uses permutation group theory to explain what is 

well-known to the jazz musician; it offers no new jazz theory. It uses mathematics that is well-

known to specialists in the mathematics and music subdiscipline of music theory; it offers no 

new mathematics. Its beauty lies in its synergetic application that acts as an invitation to those 

working in both disciplines to join in a conversation that will surely benefit all who choose to 

participate.       
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APPENDIX A. MODAL HARMONY 

A.1. Diatonic Modes 

A.1.1. Phrygian 

 

 

 

 

 

 

 

 

 

 

7 6 
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4 
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II

∆7
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III
7
 

 G
7
 

   A 
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−75
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   P 

VI
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∆7

 

   P 
IV

−7
 

 A
−7

 

 T 

I
−7

 

E
−7

 

   C 

VII
−7

 

  D
−7

 

  

r 

            Phrygian 

(D(∅), C7): r
2
 := (3164275) 
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A.1.2. Lydian 
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1 7 

6 
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VI
−7

 

 D
−7
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 V
∆7

 

 C
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IV
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                Lydian 

(D(∅), C7): r
3
 := (4152637) 
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A.1.3. Mixolydian 
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A.1.4. Aeolian 
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A.2. Synthetic Scale Modes  

A.2.1. Real Melodic Minor 5 

 

 

 

 

 

 

 

 

 

 

 

 

N.C. 

Real 
Melodic 
Minor 5 

II−79,11,13 

Dorian 2, 4 

N.C. 

(no discernible 3rd) 

Lydian 5, (3) 

IV79,11,13 

Lydian 7, 2 

Vo79,13 

Super Locrian o6, o7  

VIo79,13 

 [o7 =  ̂ ] 

Harmonic 
Minor 5 

VII−759,13 

Super Locrian 6 
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A.2.2. Harmonic Minor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I−Δ7 9,13 

Harmonic 
Minor 

IIo79,13 

Locrian 6 

IIIΔ75 9,13 

Ionian 5 

IV−7 9,11,13 

Dorian 4 

V79,13 

Mixolydian 2, 6 

VI∆79,11,13 

Lydian 2 

VIIo79,13 

Super Locrian o7 
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A.2.3. Harmonic Major 

 

 

 

 

 

 

 

 

 

 

 

 

 

IΔ7 913 

Harmonic 
Major 

II−75 9,13 

Dorian5 

III−75 9,11,13 

Super Locrian 4 

IV−∆7 9,11,13 

Real Melodic 
Minor 4 

V79,13 

Mixolydian 2 

VI∆7 5,9,11,13 

Lydian 2,5 

VIIo7 9,13 

Locrian o7 
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A.2.4. Double Harmonic 

 

A.2.5. Double Harmonic 5 

 

IΔ79,13 

Double 
Harmonic 

II7 9,11  

[7 =  ̂ ] 

Lydian 2,6 or 

⊂ (dominant)  

Be-bop 2,4 
IIIo7 9,13 

Phrygian o4,o7 

IV−∆7 9,11,13 

Harmonic 
Minor 4 

V75 9,13 

Mixolydian 
2,5 

VI∆75 9,11,13 

Ionian 2,5 

VIIo7 9[9],13 

Locrian o3,o7 

IΔ75 9,13 

Double 
Harmonic 5 

II∆7 9 

 Lydian 2,6 

 or [7 =  ̂] 

II75,9 

⊂ (dominant)  

Be-bop 2, 4 
III∆69 

⊂ (m j  ) 

Be-bop 2 

IV∆7 9,11,13 

Lydian 2,6 

V∆65 9,9 

[3 =  ̂, 6 =  ̂] 

⊂        2, 2, 5 

VI−∆7 9,13 

Harmonic Minor 
o4 

or 

[3 =  ̂] VI∆7 9,13 

Harmonic Major 
2, 2 (no  ̂) 

  

N.C. 

(no discernible 3rd) 

No discernible scale 
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APPENDIX B. LEAD SHEETS 

B.1. “The Beatles” 
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B.2. “Bemsha Swing”
162

 

 

                                                
162  The analysis is based on a transcription by Rick Peckham, received October 1987. The publisher of “Bemsha 

Swing” provided a lead sheet that is contained in Appendix B.2. There are two minor discrepancies. The publisher’s 

lead sheet has C∆—B 7—A
7—G7 in mm. 15-6. A

7 and G7 are tritone substitutions of the chords in the 

transcription, and the B
7
 is analyzed as a member of the permutation in mm. 5-6 of the Peckham transcription. The 

final chord on the publisher’s lead sheet is D
∆7. My hearing of the structural final chord agrees with Peckham, 

although I do hear a second inversion D
∆ as a suffix embellishment to the arrival of the structural A

∆.  
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B.3. “The Father and the Son and the Holy Ghost” 

 

 

 



 

 

152 

 

B.4. “Hotel Vamp” 
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B.5. “Ma Belle Hélène”
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“Ma Belle Hélène,” p.2 
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APPENDIX C. AEBERSOLD/BAKER SCALE SYLLABUS 

 

Chord/Scale Symbol Scale Name Scale ( ̂=C) 

1. Five Basic Categories 

C Major (C,D,E,F,G,A,B) 

C
7
 Mixolydian (C,D,E,F,G,A,B) 

C
−
 Dorian (C,D,E,F,G,A,B) 

C
−75 Locrian (C,D,E,F,G,A,B) 

C
º
 Diminished(W,H) [Octatonic(2,3)] (C,D,E,F,G,A,B,B) 

2. Major Scale Choices 

CΔ Major (C,D,E,F,G,A,B) 

C Major Pentatonic (C,D,E,G,A) 

CΔ4 Lydian (C,D,E,F,G,A,B) 

CΔ Bebop (Major) (C,D,E,F,G,A,A,B) 

CΔ6 Harmonic Major (C,D,E,F,G,A,B) 

CΔ5,11
 Lydian Augmented (C,D,E,F,G,A,B) 

C Augmented    [Hexatonic(11,0)] (C,D,E,G,A,B) 

C 6
th
 Mode of Harmonic Major  

C Diminished(H,W)  [Octatonic(0,1)] (C,D,E,E,F,G,A,B) 

C Blues Scale (C,E,F,G,G,B) 

3. Dominant Seventh Scale Choices 

C
7
 Mixolydian (C,D,E,F,G,A,B) 

C
7
 Major Pentatonic (C,D,E,G,A) 

C
7
 Bebop (Dominant) (C,D,E,F,G,A,B,B) 

C
7 9 

Spanish/Jewish [Mixolydian 2, 6] 

(5
th
 Mode of Harmonic Minor) 

 

(C,D,E,F,G,A,B) 

C
7 11

 
Lydian Dominant 

(4
th
 Mode of Melodic Minor) 

(C,D,E,F,G,A,B) 

C
7 6 

Hindu [Mixolydian 6] 

(5
th
 Mode of Melodic Minor) 

 

C
7aug( #5,#11)

 Whole Tone (C,D,E,F,G,B) 

C
7 9(9,11)

 Octatonic(0,1) (C,D,E,E,F,G,A,B) 

C
7 #9 (#5,9,#11)

 
Diminished Whole Tone [Altered Scale, 

Super Locrian]. (7th Mode of Melodic Minor) 
(C,D,E,F,G,A,B) 

C
7
 Blues Scale (C,E,F,G,G,B) 

Dominant 7
th
 sus4 Can also be seen as G

−
/C  
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C
7sus4

 Mixolydian (C,D,E,F,G,A,B) 

C
7sus4

 Major Pentatonic built on 7 (C,D,F,G,B) 

C
7sus4

 Bebop [Dominant] (C,D,E,F,G,A,B,B) 

4. Minor Scale Choices 

C
−
 or C

−7
 Dorian (C,D,E,F,G,A,B) 

C
−
 or C

−7
 Minor Pentatonic (C,E,F,G,B) 

C
− 

or C
−7

 Bebop (Minor) (C,D,E,E,F,G,A,B) 

C
−Δ7

 Real Melodic Minor (C,D,E,F,G,A,B) 

C
−
, C

−6
, C

−Δ7
 Bebop (Minor no.2) (C,D,E,F,G,A,A,B) 

C
−
, C

−7
 Blues Scale (C,D,E,F,G,G,B) 

C
−Δ6 Harmonic Minor (C,D,E,F,G,A,B) 

C
−
, C

−7
 Diminished (W,H)  [Octatonic (2,3)] (C,D,E,F,G,A,A,B) 

C
−
, C

−
(2, 6) Phrygian (C,D,E,F,G,A,B) 

C
−
, C

−
 (6) Aeolian (C,D,E,F,G,A,B) 

5. Minor Seventh Flat Five Scale Choices 

C
−75 Locrian (C,D,E,F,G,A,B) 

C
−75 9 Locrian 2 (C,D,E,F,G,A,B) 

C
−75(9 or 9)

 Minor Seventh Flat Five Bebop Scale (C,D,E,F,G,G,A,B) 

6. Diminished Scale Choices 

C
o
 Diminished(W,H)   [ Octatonic( 2,3)] (C,D,E,F,G,A,A,B) 
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APPENDIX D. PERMUTATION LISTS 

D.1. (D(∅), O) 

Group Member Permutation Triadic Assignment 

i (1)(2)(3)(4)(5)(6) (C
Δ
)(F

∆
)(A

−
)(G

Δ
)(E

−
)(D

−
) 

a (1352) (C
Δ
,A

−
,E

−
,F

∆
) 

a
2
 (15)(23) (C

Δ
,E

−
)(F

∆
,A

−
) 

a
−1

 (1253) (C
Δ
,F

∆
,E

−
,A

−
) 

b (1654) (C
Δ
,D

−
,E

−
,G

Δ
) 

b
2
 (15)(46) (C

Δ
,E

−
)(G

Δ
,D

−
) 

b
−1

 (1456) (C
Δ
,G

Δ
,E

−
,D

−
) 

b
a
 (2436) (F

∆
,G

Δ
,A

−
,D

−
) 

(b
a
)

2
 (23)(46) (F

∆
,A−)(GΔ

,D
−
) 

(b
a
)

−1
 (2634) (C

−
,D

−
,A−,G

Δ
) 

ab (134)(265) (C
Δ
,A−,G

Δ
)(F

Δ
,D

−
,E

−
) 

(ab)
−1

 (143)(256) (C
Δ
,G

Δ
,A−)(F

Δ
,E−,D

−
) 

ba (162)(354) (C
Δ
,D

−
,F

Δ
)(A−,E

−
,G

Δ
) 

(ba)
−1

 (126)(345) (C
Δ
,F

Δ
,D

−
)(A−,G

Δ
,E

−
) 

a
−1

b (124)(365) (C
Δ
,F

Δ
,G

Δ
)(A−,D

−
,E

−
) 

(a
-1

b)
-1

 (142)(356) (C
Δ
,G

Δ
,F

Δ
)(A−,E−

,D
−
) 

ab
−1

 (136)(245) (C
Δ
,A−,D

−
)(F

Δ
,G

Δ
,E

−
) 

(ab
−1

)
−1

 (163)(254) (C
Δ
,D

−
,A−)(FΔ

,E
−
,G

Δ
) 

aba (15)(26)(34) (C
Δ
,E

−
)(F

Δ
,D

−
)(A−,GΔ

) 

ab
−1

a (15)(24)(36) (C
Δ
,E

−
)(F

Δ
,G

Δ
)(A−,D

−
) 

a
2
b (14)(23)(56) (C

Δ
,G

Δ
)(F

Δ
,A−)(E−

,D
−
) 

ab
2
 (13)(25)(46) (C

Δ
,A−)(F

Δ
,E

−
)(G

Δ
,D

−
) 

a
−1

b
2
 (12)(35)(46) (C

Δ
,F

Δ
)(A−,E−

)(G
Δ
,D

−
) 

a
2
b

3
 (16)(23)(45) (C

Δ
,D

−
)(F

Δ
,A−)(G

Δ
,E

−
) 
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D.2. (Hex(3,4), O) 

 

Group Member Permutation Triadic Assignment 

i (1)(2)(3)(4)(5)(6) (CΔ)(C
−
)(EΔ)(A

Δ)(E
−
)(A

−
) 

a (1352) (CΔ,EΔ,E
−
,C

−
) 

a
2
 (15)(23) (CΔ,E

−
)(C

−
,EΔ) 

a
-1

 (1253) (CΔ,C
−
,E

−
,EΔ) 

b (1654) (CΔ,A
−
,E

−
,A

Δ) 

b
2
 (15)(46) (CΔ,E

−
)(A

Δ,A
−
) 

b
-1

 (1456) (CΔ,A
Δ,E

−
,A

−
) 

 b
a
 (2436) (C

−
,A

Δ,EΔ,A
−
) 

(b
a
)

2
 (23)(46) (C

−
,EΔ)(A

Δ,A
−
) 

(b
a
)

-1
 (2634) (C

−
,A

−
,EΔ,A

Δ) 

ab (134)(265) (CΔ,EΔ,A
Δ)(C

−
,A

−
,E

−
) 

(ab)
-1

 (143)(256) (CΔ,A
Δ,EΔ)(C

−
,E

−
,A

−
) 

ba (162)(354) (CΔ,A
−
,C

−
)(EΔ,E

−
,A

Δ) 

(ba)
-1

 (126)(345) (CΔ,C
−
,A

−
)(EΔ,A

Δ,E
−
) 

a
-1

b (124)(365) (CΔ,C
−
,A

Δ)(EΔ,A
−
,E

−
) 

(a
-1

b)
-1

 (142)(356) (CΔ,A
Δ,C

−
)(EΔ,E

−
,A

−
) 

ab
-1

 (136)(245) (CΔ,EΔ,A
−
)(C

−
,A

Δ,E
−
) 

(ab
-1

)
-1

 (163)(254) (CΔ,A
−
,EΔ)(C

−
,E

−
,A

Δ) 

aba (15)(26)(34) (CΔ,E
−
)(C

−
,A

−
)(EΔ,A

Δ) 

ab
-1

a (15)(24)(36) (CΔ,E
−
)(C

−
,A

Δ)(EΔ,A
−
) 

a
2
b (14)(23)(56) (CΔ,A

Δ)(C
−
,EΔ)(E

−
,A

−
) 

ab
2
 (13)(25)(46) (CΔ,EΔ)(C

−
,E

−
)(A

Δ,A
−
) 

a
-1

b
2
 (12)(35)(46) (CΔ,C

−
)(EΔ,E

−
)(A

Δ,A
−
) 

a
2
b

3
 (16)(23)(45) (CΔ,A

−
)(C

−
,EΔ)(A

Δ,E−) 
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D.3. Conjugacy classes, (Hex(x,y), O) 

 

Conjugacy Class Member Permutation 

i i (1)(2)(3)(4)(5)(6) 

cl(a
2
) 

a
2
 (15)(23) 

b
2
 (15)(46) 

(b
a
)

2
 (23)(46) 

cl(aba) 

aba (15)(26)(34) 

ab
−1

a (15)(24)(36) 

a
2
b (14)(23)(56) 

ab
2
 (13)(25)(46) 

a
−1

b
2
 (12)(35)(46) 

a
2
b

3
 (16)(23)(45) 

cl(ab) 

ab (134)(265) 

(ab)
−1

 (143)(256) 

ba (162)(354) 

(ba)
−1

 (126)(345) 

a
−1

b (124)(365) 

(a
−1

b)
−1

 (142)(356) 

ab
−1

 (136)(245) 

(ab
−1

)
−1

 (163)(254) 

cl(a) 

a (1352) 

a
−1

 (1253) 

b (1654) 

b
−1

 (1456) 

b
a
 (2436) 

(b
a
)

−1
 (2634) 
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D.4.(Oct(0,1), O) 

Group Member Permutation Triadic Assignment 

i (1)(2)(3)(4)(5)(6)(7)(8) (C
Δ
)(C

−
)(E

Δ
)(E

−
)(G

Δ
)(G

−
)(A

Δ
)(A

−
) 

g (1357)(2468) (C
Δ
,E

Δ
,G

Δ
,A

Δ
,)(C

−
,E

−
,G

−
,A

−
) 

g
2
 (15)(26)(37)(48) (C

Δ
,G

Δ
)(C

−
,G

−
)(E

Δ
,A

Δ
)(E

−
,A

−
) 

g
−1

 (1753)(2864) (C
Δ
,A

Δ 
,G

Δ
,E

Δ
)(C

−
,A

−
,G

−
,E

−
) 

h (1287)(3465) (C
Δ
,C

−
,A

−
,A

Δ
)(E

Δ
,E

−
,G

−
,G

Δ
) 

h
2
 (18)(27)(36)(45) (C

Δ
, A

−
)(C

−
,A

Δ
)(E

Δ
, G

−
)(E

−
,G

Δ
) 

h
−1

 (1782)(3564) (C
Δ
, A

Δ
,A

−
,C

−
)(E

Δ
, G

Δ
,G

−
,E

−
) 

h
g
 (1342)(5687) (C

Δ
,E

Δ
,E

−
,C

−
)(G

Δ
,G

−
,A

−
,A

Δ
) 

(h
g
)

2
 (14)(23)(58)(67) (C

Δ
,E

−
)(C

−
,E

Δ
)(G

Δ
, A

−
)(G

−
,A

Δ
) 

(h
g
)

−1
 (1243)(5786) (C

Δ
,C

−
,E

−
,E

Δ
)( G

Δ
 A

Δ
,A

−
,G

−
) 

gh (145)(267) (C
Δ
,E

−
,G

Δ
)(C

−
,G

−
,A

Δ
) 

(gh)
−1

 (154)(276) (C
Δ
, G

Δ
,E

−
)(C

−
,A

Δ
,G

−
) 

hg (148)(367) (C
Δ
,E

−
,A

−
)(E

Δ
,G

−
,A

Δ
) 

(hg)
−1

 (184)(376) (C
Δ
,A

−
, E

−
)(E

Δ
,A

Δ
,G

−
) 

g
−1

h (273)(485) (C
−
,A

Δ
,E

Δ
)(E

−
,A

−
,
 
G

Δ
) 

(g
-1

h)
−1

 (237)(458) (C
−
,E

Δ
,A

Δ
)(E

−
,G

Δ
, A

−
) 

gh
−1

 (158)(236) (C
Δ
, G

Δ
,A

−
)(C

−
,E

Δ
,G

−
) 

(gh
-1

)
−1

 (185)(263) (C
Δ
, A

−
,G

Δ
)(C

−
, G

−
 ,E

Δ
) 

ghg (16)(28)(35)(47) (C
Δ
,G

−
)(C

−
,A

−
)(E

Δ
,G

Δ
)(E

−
,A

Δ
) 

gh
−1

g (17)(25)(38)(46) (C
Δ
, A

Δ
)(C

−
,G

Δ
)(E

Δ
,A

−
)(E

−
,G

−
) 

g
2
h (13)(25)(47)(68) (C

Δ
,E

Δ
)(C

−
,G

Δ
)(E

−
,A

Δ
)(G

−
, A

−
) 

gh
2
 (16)(25)(34)(78) (C

Δ
,G

−
)(C

−
,G

Δ
)(E

Δ
,E

−
)(A

Δ
,A

−
) 

g
−1

h
2
 (12)(38)(47)(56) (C

Δ
, C

−
)(E

Δ
, A

−
)(E

−
,A

Δ
)(G

Δ
, G

−
) 

g
2
h

3
 (16)(24)(38)(57) (C

Δ
,G

−
)(C

−
,E

−
)(E

Δ
,A

−
)(G

Δ
,A

Δ
) 
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D.5. Conjugacy classes, (Oct(x.y), O)   

Conjugacy Class Member Permutation 

() i (1)(2)(3)(4)(5)(6)(7)(8) 

cl(ghg) 

ghg (16)(28)(35)(47) 

gh
−1

g (17)(25)(38)(46) 

g
2
h (13)(25)(47)(68) 

gh
2
 (16)(25)(34)(78) 

g
−1

h
2
 (12)(38)(47)(56) 

g
2
h

3
 (16)(24)(38)(57) 

cl(g
2
) 

g
2
 (15)(26)(37)(48) 

h
2
 (18)(27)(36)(45) 

(h
g
)

2
 (14)(23)(58)(67) 

cl(gh) 

gh (145)(267) 

(gh)
−1

 (154)(278) 

hg (148)(367) 

(hg)
−1

 (184)(376) 

g
−1

h (273)(485) 

(g
−1

h)
−1

 (237)(458) 

gh
−1

 (158)(236) 

(gh
−1

)
−1

 (185)(263) 

cl(g) 

g (1357)(2468) 

g
−1

 (1753)(2864) 

h (1287)(3465) 

h
−1

 (1782)(3564) 

h
g
 (1342)(5687) 

(h
g
)

−1
 (1243)(5786) 
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D.6. Oh Reflection, Tetrahedron 

 

i (1)(2)(3)(4)(5)(6) (CΔ)(C
−
)(EΔ)(A

Δ)(E
−
)(A

−
) 

m (15)(23)(46) (C
∆
,E

−
)(C

−
,E

∆
)(A

∆
,A

−
) 

(a)m (1253)(46) (C
Δ
,C

−
,E

−
,E

Δ
)(A

Δ
,A

−
) 

(a
2
)m (46) (A

∆
, A

−
) 

(a
−1

)m (1352)(46) (C
Δ
,E

Δ
,E

−
,C

−
)(A

Δ
,A

−
) 

(b)m (1456)(23) (C
Δ
,A

Δ
,E

−
,A

−
)(C

−
,E

Δ
) 

(b
2
)m (23) (C

−
,E

∆
) 

(b
−1

)m (1654)(23) (C
Δ
,A

−
,E

−
,A

Δ
)(C

−
,E

Δ
) 

(b
a
)m (15)(2634) (C

Δ
,E

−
)(C

−
,A

−
,E

Δ
,A

Δ
) 

((b
a
)
2
)m (15) (C

−
,E

∆
) 

((b
a
)
−1

)m (15)(2436) (C
Δ
,E

−
)(C

−
,A

Δ
,E

Δ
,A

−
) 

(ab)m (124536) (C
Δ
,C

−
,A

Δ
, E

−
,E

Δ
,A

−
) 

((ab)
−1

)m (163542) (C
Δ
,A

−
,E

Δ
,E

−
,A

Δ
,C

−
) 

(ba)m (142563) (C
Δ
,A

Δ
,C

−
,E

−
,A

−
,E

Δ
) 

((ba)
−1

)m (136524) (C
Δ
,E

Δ
,A

−
,E

−
,C

−
,A

Δ
) 

(a
−1

b)m (134526) (C
Δ
,E

Δ
,A

Δ
, E

−
,C

−
,A

−
) 

((a
−1

b)
−1

)m (162543) (C
Δ
,A

−
,C

−
,E

−
,A

Δ
,E

Δ
) 

(ab
−1

)m (126534) (C
Δ
,C

−
,A

−
,E

−
,E

Δ
,A

Δ
) 

((ab
−1

)
−1

)m (1,4,3,5,6,2) (C
Δ
,A

Δ
,E

Δ
,E

−
,A

−
,C

−
) 

(aba)m (24)(36) (C
−
,A

Δ
)(E

Δ
,A

−
) 

(ab
−1

a)m (26)(34) (C
−
,A

−
)(E

Δ
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D.7. Oh Reflection, Cube 

 

i (1)(2)(3)(4)(5)(6)(7)(8) (C
Δ
)(C

−
)(E

Δ
)(E

−
)(G

Δ
)(G

−
)(A

Δ
)(A

−
) 

k (12)(34)(56)(78) (C
Δ
,C

−
)(E

Δ
,E

−
)(G

Δ
,G

−
)(A

Δ
,A

−
) 

(g)k (1458)(2367) (C
Δ
,E

−
,G

Δ
,A

−
)(C

−
,E

Δ
,G

−
,A

Δ
) 

(g
2
)k (16)(25)(38)(47) (C

Δ
,G

−
)(C

−
,G

Δ
)(E

Δ
,A

−
)(E

−
,A

Δ
) 

(g
−1

)k (1854)(2763) (C
Δ
,A

−
,G

Δ
,E

−
)(C

−
,A

Δ
,G

−
,E

Δ
) 

(h)k (27)(45) (C
−
,A

Δ
)(E

−
,G

Δ
) 

(h
2
)k (17)(28)(35)(46) (C∆,A∆)(C

−
,A

−
)(E

∆
,G

∆
)(E

−
,G

−
) 

(h
−1

)k (18)(36) (C
Δ
,A

−
)(E

Δ
,G

−
) 

(h
g
)k (14)(67) (C

Δ
,E

−
)(G

−
,A

Δ
) 

((h
g
)
2
)k (13)(24)(57)(68) (C

∆
,E

∆
)(C

−
,E

−
)(G∆,A∆)(G−,A−) 

((h
g
)
−1

)k (23)(58) (C
-
,E

Δ
)(A

-
,G

Δ
) 

(gh)k (134687)(25) (C
Δ
,E

Δ
,E

−
,G

−
,A

−
,A

Δ
)(C

−
,G

Δ
) 

((gh)
−1

)k (16)(287534) (C
Δ
,G

−
)(C

−
,A

−
,A

Δ
,G

Δ
,E

Δ
,E

−
) 

(hg)k (135682)(47) (C
Δ
,E

Δ
,G

Δ
,G

−
,A

−
,C

−
)(E

−
,A

Δ
) 

((hg)
−1

)k (175642)(38) (C
Δ
,A

Δ
,G

Δ
,G

−
,E

−
,C

-
)(E

Δ
,A

−
) 

(g
−1

h)k (128653)(47) (C
Δ
,C

−
,A

−
,G

−
,G

Δ
,E

Δ
)(E

−
,A

Δ
) 

((g
−1

h)
−1

)k (124657)(38) (C
Δ
,C

−
,E

−
,G

−
,G

Δ
,A

Δ
)(E

Δ
,A

−
) 

(gh
−1

)k (16)(243578) (C
Δ
,G

−
)(C

−
,E

−
,E

Δ
,G

Δ
,A

Δ
,A

−
) 

((gh
−1

)
−1

)k (178643)(25) (C
Δ
,A

Δ
,A

−
,G

−
,E

−
,E

Δ
)(C

−
,G

Δ
) 

(ghg)k (1548)(2736) (C
Δ
,G

Δ
,E

−
,A

−
)(C

−
,A

Δ
,E

Δ
,G

−
) 

(gh
−1

g)k (1845)(2637) (C
Δ
,A

−
,E

−
,G

Δ
)(C

−
,G

−
,E

Δ
,A

Δ
) 

(g
2
h)k (1485)(2673) (C

Δ
,E

−
,A

−
,G

Δ
)(C

−
,G

−
,A

Δ
,E

Δ
) 

(gh
2
)k (15)(26) (C

∆
,G

∆
)(C

−
,G

−
) 

(g
−1

h
2
)k (37)(48) (E

∆
,A

∆
)(E

−
,A

−
) 

(g
2
h

3
)k (1584)(2376) (C

Δ
,G

Δ
,A

−
,E

−
)(C

−
,E

Δ
,A

Δ
,G

−
) 

 

 

 

 

 

 

 

 

 



 

 

164 

 

APPENDIX E. DISCOGRAPHY 

COLTRANE, JOHN 

“The Father and the Son and the Holy Ghost,” 1966. Meditations, Impulse! A-9110. 

 

DAMERON, TADD 

“Lady Bird,” 1949. The Miles Davis/Tadd Dameron Quintet in Paris Festival international de 

Jazz, Columbia JC 34804. 

 

HENDERSON, JOE 

“Punjab,” 1964. In ‘n Out, Blue Note BST 84166. 

 

PARKER, CHARLIE 

“Ah-Leu-Cha,” 1948. Bird: Master Takes, Savoy 2201. 

“Another Hairdo,” 1948. Bird: Master Takes, Savoy 2201. 

“The Bird,” 1956. Charlie Parker: The Verve Years 1948-1950, Verve 2501. 

“Bird Gets the Worm,” 1948. Bird: Master Takes, Savoy 2201. 

“Bloomdido,” 1953. Charlie Parker: The Verve Years 1948-1950, Verve 2501/8006/8840. 

“Blue Bird,” 1948. Bird: Master Takes, Savoy 2201. 

“Diverse,” 1957. The Charlie Parker Story, no.1, Verve 8009. 

“Kim” no.1, 1956. The Genius of Charlie Parker, no.3: Now’s the Time, Verve 8005/8840. 

“Klaun Stance,” 1948. Bird: Master Takes Savoy 2201. 

“Mohawk,” 1956. Charlie Parker: The Verve Years 1948-1950, Verve 2501/8006/8840. 

“Vista,” 1953. The Charlie Parker Story, no.1, Verve 8000/8009. 

“Warming Up a Riff,” 1949. Bird: Master Takes Savoy 2201. 

 

MARTINO, PAT 

“Joyous Lake,” 1976. Joyous Lake, Warner Brothers BS 2977. 

“Mardi Gras,” 1976. Joyous Lake, Warner Brothers BS 2977. 

“Song Bird,” 1976. Joyous Lake, Warner Brothers BS 2977. 

 

MONK, THELONIOUS  

“Bemsha Swing,” co-written by Denzil Best, 1952. Monk, Original Jazz Classics OJC-010;  

Prestige LP 7027.  

 

SCOFIELD, JOHN 

“The Beatles,” 1979. Who’s Who, Jive/Novus AN 3018; One Way Records 34512. 

 

SWALLOW, STEVE 

“Hotel Vamp,” 1974. Hotel Hello, ECM 1055. 

 

WHEELER, KENNY 

“Ma Belle Hélène,” 1990. The Widow in the Window, ECM 1417.  
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APPENDIX F. COPYRIGHT PERMISSION 

“The Beatles” 

 

from: John Bishop jbisho8@tigers.lsu.edu  

to: sco@johnscofield.com 

date: Tue, May 22, 2012 at 7:20 PM 

subject: Request for permission to use "The Beatles" 

mailed-by: tigers.lsu.edu 

 

Dear Mr. Scofield, 

First let me say that I have enjoyed your work for well over twenty-five years. I am currently 

working on my PhD dissertation in music theory at Louisiana State University. My area of study 

is mathematics and music. I have worked out an analysis of "The Beatles" that I would like to 

include in the dissertation and respectfully ask for your permission to provide a lead sheet within 

the document. 

 

Thank you, 

 

John Bishop 

 

from: John Scofield sco@johnscofield.com  

to: "jbisho8@tigers.lsu.edu" <jbisho8@tigers.lsu.edu> 

date: Wed, May 23, 2012 at 8:41 AM 

subject: Hi John 

mailed-by: aol.com 

signed-by: mx.aol.com 

 

That's great that you're using the Beatles in your dissertation and thanks for asking about using 

the lead sheet....permission granted!!! 

Thanks for digging the tune! 

Good luck! 

John Scofield 

 

“The Father, and the Son, and the Holy Ghost” transcription 

Confirmation Number: 11005632 

Order Date: 06/20/2012 

John Bishop  

jbisho8@tigers.lsu.edu  

+1 (225)7668729  

 

Annual review of jazz studies  

 Order detail ID: 62537570  

 ISSN: 0731-0641  

 Publication year: 2012 

 Publication Type: Journal 
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 Publisher: SCARECROW PRESS, INC. 

 Rightsholder: SCARECROW PRESS, INC. 

 Author/Editor: David Liebman 

 Permission Status: Granted 

 Permission type: Republish or display content 

 Type of use: Republish in a dissertation 

 Republishing organization: Louisiana State University 

 Organization status: For-profit 

 Republication date: 12/12/2012 

 Circulation/ Distribution: 1 

 Type of content: Figure/ diagram/ table 

 Description of requested content: The Father, the Son and the Holy Ghost 

 Page range(s): 170 

 Translating to: No Translation 

 Requested content's publication date: 12/12/2012 

Mick Goodrick reharmonization 

From: John Bishop <jbisho8@tigers.lsu.edu> 

Date: June 22, 2012 12:07:24 AM EDT 

To: <spalm@nbmedia.com> 

Subject: Copyright permission 

Mr. Palm, 

I am writing my dissertation in music theory at Louisiana State University on mathematical 

permutations of triads and would like to use an example written by Mick Goodrick that was 

contained in his "Thinking Guitarist" entry to the July 1994 edition of Guitar Player. Whom 

should I contact to request permission? 

Thank you for your help, 
John Bishop 

On Fri, Jun 22, 2012 at 1:27 PM, Michael Molenda <MMolenda@nbmedia.com> wrote: 

Michael Molenda MMolenda@nbmedia.com 

Dear John, 

Thanks for asking permission.  

I have no problem with you using Mick Goodrick's example in your dissertation only, as long as 

you credit Mick,Guitar Player, and identify the issue (July 1994). 

I hope all goes well. 

Sincerely, 

Mike 

Michael Molenda 

Editor in Chief, GUITAR PLAYER 

Editorial Director, MUSIC PLAYER NETWORK 

1111 Bayhill Drive, Suite 125 

San Bruno, CA 94066 

Office: 650-238-0272 

Cell: 415-309-7401 

 



 

 

167 

 

“Hotel Vamp” 
 

from: John Bishop jbisho8@tigers.lsu.edu  

to: librarian@wattxtrawatt.com 

date: Fri, Nov 2, 2012 at 10:28 PM 

subject: Permission to use Hotel Vamp 

mailed-by: tigers.lsu.edu 

 

Mr. Swallow, 

I am completing my PhD in music theory at Louisiana State University. I am studying 

mathematics and music. I completed an analysis of 'Hotel Vamp" and respectfully ask 

permission to include it in my dissertation. The use of your composition will be restricted to the 

dissertation. 

Thank you for your consideration 

 

from: WattXtraWatt wattxtrawatt@wattxtrawatt.com  

to: John Bishop <jbisho8@tigers.lsu.edu> 

date: Mon, Nov 5, 2012 at 4:13 PM 

subject: Re: Permission to use Hotel Vamp 

 

Dear Mr. Bishop, 

Sorry for the delay in replying. Steve is touring in Europe but I managed to contact him and he 

gives you his blessings. 

Best Wishes, 

The WXW Librarian 

 

“Bemsha Swing” 

Thelonious Music Corporation (BMI) 

Don Sickler 

Second Floor Music (BMI) 

130 West 28
th
 Street 

NY, NY 10001-6108 

p: 212-741-1175 

f: 212-627-7611 

don@secondfloormusic.com 

from: John Bishop jbisho8@tigers.lsu.edu  

to: don@secondfloormusic.com 

date: Wed, May 23, 2012 at 11:32 PM 

subject: Permission to use Bemsha Swing 

mailed-by: tigers.lsu.edu 

 

Dear Second Floor Music, 

My name is John Bishop and I am currently writing my PhD dissertation in music theory at 

Louisiana State University. The research uses mathematical group theory to describe a 

mailto:don@secondfloormusic.com
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permutational approach to jazz harmony. I spoke someone in your office about gaining 

permission to use "Bemsha Swing" as a subject for analysis within the dissertation. She asked 

that I send a sample of the lead sheet and the analysis. The lead sheet is a transcription I received 

from a professor at Berklee College in 1987. I completed the Finale image and the analysis. If 

you have any question regarding the analysis, please let me know. 

I respectfully request permission to include "Bemsha Swing" into my dissertation.  

Thank you, 

John Bishop 

 

2012/8/23 Don Sickler <don@secondfloormusic.com> 

Don Sickler 

 phone 212-741-1175 

 email don@secondfloormusic.com 

 Bemsha Swing approved lead sheet 

Attachments: DenzilBest-TheloniousMonk_BemshaSwing_Cls.pdf 

 

“Ma Belle Hélène” 

from: Brian Shaw bshaw1@lsu.edu  

to: Mark Wheeler <whee57h@live.co.uk> 

cc: John A Bishop <jbisho8@lsu.edu> 

date: Fri, Jun 22, 2012 at 7:55 AM 

subject: Hello and question 

signed-by: gmail.com 

 

Hello again Mark! 

I hope you are doing well. It was so great to see you, Ken, and the 

rest of the family in London last month. Thanks again for hosting 

Paula and me. 

I have a Doctoral student who is currently writing a very promising 

dissertation involving some of your Dad's harmonic approaches, and I 

was hoping he would be able to get permission to use the score to "Ma 

Belle Hélène in his dissertation. 

His name is John Bishop, and I have copied him in on this email. If 

you would be so kind, please be in touch with him and let him know how 

Ken feels about this, and if he gives his permission to use the tune 

in his dissertation. 

Thank you very much, and all the best. Looking forward to working on 

Windmill Tilter with you soon! 

Brian 
 
---------- Forwarded message ---------- 

From: John A Bishop <jbisho8@tigers.lsu.edu> 

Date: Thu, Jun 21, 2012 at 11:10 PM 

mailto:jbisho8@tigers.lsu.edu
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Subject: Wheeler copyright 

To: Brian Shaw <bshaw1@lsu.edu> 

from: Mark Wheeler whee57h@live.co.uk  

to: Brian Shaw <bshaw1@lsu.edu> 

cc: jbisho8@tigers.lsu.edu 

date: Tue, Aug 14, 2012 at 10:11 AM 

subject: RE: Hello and question 

mailed-by: live.co.uk 

 

Brian and John 

 

Huge apology to you both. 

 

Please go ahead with the dissertation and let us know if you need anything else. 

 

Good luck John 

From: bshaw1@lsu.edu 

Date: Mon, 13 Aug 2012 20:01:15 -0500 

Subject: Re: Hello and question 

To: whee57h@live.co.uk 

CC: jbisho8@lsu.edu 

 

 

 
 

 

 

 

 

mailto:bshaw1@lsu.edu
mailto:bshaw1@lsu.edu
mailto:whee57h@live.co.uk
mailto:jbisho8@lsu.edu
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